Abstract
In the paper, we propose a deterministic approximation algorithm for maximizing a generalized monotone submodular function subject to a matroid constraint. The function is generalized through a curvature parameter \(c\in [0,1]\), and essentially reduces to a submodular function when \(c=1\). Our algorithm employs the deterministic approximation devised by Buchbinder et al. [3] for the \(c=1\) case of the problem as a building block, and eventually attains an approximation ratio of \(\frac{1+g_c(x)+\Delta \cdot \left[ 3+c-(2+c)x-(1+c)g_c(x)\right] }{2+c+(1+c)(1-x)}\) for the curvature parameter \(c\in [0,1]\) and for a calibrating parameter that is any \(x\in [0,1]\). For \(c=1\), the ratio attains 0.5008 by setting \(x=0.9\), coinciding with the renowned performance guarantee of the problem. Moreover, when the submodular set function degenerates to a linear function, our generalized algorithm always produces optimum solutions and thus achieves an approximation ratio 1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8, 307–328 (2004)
Balkanski, E., Rubinstein, A., Singer, Y.: The power of optimization from samples. In: Proceedings of NIPS, pp. 4017–4025 (2016)
Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2+\(\varepsilon \))-approximation for submodular maximization over a matroid. In: Proceedings of SODA, pp. 241–254 (2019)
Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: Submodular maximization with cardinality constraints. In: Proceedings of SODA, pp. 1433–1452 (2014)
C\(\breve{\rm a}\)linescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766 (2011)
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of FOCS, pp. 575–584 (2010)
Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Appl. Math. 7, 251–274 (1984)
Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45, 634–652 (1998)
Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43, 514–542 (2014)
Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions-II. Math. Program. Study 8, 73–87 (1978)
Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and submodular knapsack constraints. In: Proceedings of NIPS, pp. 2436–2444 (2013)
Iyer, R.K., Jegelka, S., Bilmes, J.A.: Curvature and optimal algorithms for learning and minimizing submodular functions. In: Proceedings of NIPS, pp. 2742–2750 (2013)
Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55, 270–296 (2006)
Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3, 177–188 (1978)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)
Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42, 1197–1218 (2017)
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of STOC, pp. 67–74 (2008)
Vondrák, J.: Submodularity and curvature: the optimal algorithm. RIMS Kokyuroku Bessatsu B23, 253–266 (2010)
Acknowledgements
The first two authors are supported by Natural Science Foundation of China (No. 11871081). The third author is supported by Natural Science Foundation of China (No. 61772005) and Natural Science Foundation of Fujian Province (No. 2017J01753). The fourth author is supported by Higher Educational Science and Technology Program of Shandong Province (No. J17KA171) and Natural Science Foundation of Shandong Province (No. ZR2019MA032) of China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, X., Xu, D., Guo, L., Li, M. (2020). Approximation Guarantees for Deterministic Maximization of Submodular Function with a Matroid Constraint. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-59267-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59266-0
Online ISBN: 978-3-030-59267-7
eBook Packages: Computer ScienceComputer Science (R0)