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Abstract

We consider the classic partial sums problem on the ultra-wide word RAM
model of computation. This model extends the classic w-bit word RAM model
with special ultrawords of length w? bits that support standard arithmetic and
boolean operation and scattered memory access operations that can access w (non-
contiguous) locations in memory. The ultra-wide word RAM model captures (and
idealizes) modern vector processor architectures.

Our main result is a new in-place data structure for the partial sum problem that
only stores a constant number of ultrawords in addition to the input and supports
operations in doubly logarithmic time. This matches the best known time bounds
for the problem (among polynomial space data structures) while improving the
space from superlinear to a constant number of ultrawords. Our results are based
on a simple and elegant in-place word RAM data structure, known as the Fenwick
tree. Our main technical contribution is a new efficient parallel ultra-wide word
RAM implementation of the Fenwick tree, which is likely of independent interest.

1 Introduction

Let A[l,...,n] be an array of integers of length n. The partial sums problem is to maintain
a data structure for A under the following operations:

e sum(i): return 7, A[k].
e update(i, A): set Afi] « Ali] + A.

The partial sums problem is a classic and well-studied data structure problem [1,2,3,4,
10,13,15,17,18,19,20,22,23,24,25,32,33,39]. Partial sums is a natural range query problem
with applications in areas such as list indexing and dynamic ranking [13], dynamic arrays
[3,33], and arithmetic coding [15,35]. From a lower bound perspective, the problem has
been central in the development of new techniques for proving lower bounds [30]. In classic
models of computation the complexity of the partial sums problem is well-understood
with tight logarithmic upper and lower bounds on the operations [32]. Hence, a natural
question is if practical models of computation capturing modern hardware advances will
allow us the overcome the logarithmic barrier.

*An extended abstract appeared at the 16th Theory and Applications of Models of Computation [5]



One such model is the RAM with byte overlap (RAMBO) model of computation [7,8,
18]. The RAMBO model extends the standard w-bit word RAM model [21] with special
words where individual bits are shared among other words, i.e., changing a bit in a word
will also change the bit in the words that share that bit. The precise model depends on
the layout of shared bits. This memory architecture is feasible to design in hardware and
prototypes have been built [28]. In the RAMBO model Brodnik et al. [9] gave a time-
space trade-off for partial sums that uses O(n®/?" +n) space and supports operations in
O(7) time and for a parameter 7, 1 < 7 < loglogn. Here, the n term in the space bound
is for the special words with shared bits (organized in a tree layout) and the O(n®/?")
term is for standard words. Plugging in constant 7, this gives an O(n®’ + n) space and
constant time solution, for any € > 0. At the other extreme, with 7 = loglogn, this gives
an O(n) space and O(loglogn) time solution.

More recently, Farzan et al. [14] introduced the wltra-wide word RAM (UWRAM)
model of computation. The UWRAM model also extends the word RAM model, but
with special ultrawords of length w? bits. The model supports standard arithmetic and
boolean operations on ultrawords and scattered memory access operations that access w
locations in memory specified by an ultraword in parallel. The UWRAM captures modern
vector processor architectures [12,29,34,37]. We present the details of the UWRAM
model in Section 2. Farzan et al. [14] showed how to simulate algorithms on RAMBO
model on the UWRAM model at the cost of slightly increasing space. Simulating the
above solution for partial sums they gave a time-space trade-off for partial sums that uses
O(n®/?" + nwlogn) space and supports operations in O(7) time and for a parameter 7,
1 <7 <loglogn. For constant 7, this is O(n® + nw logn) space and constant time, for
any € > 0, and for 7 = loglogn this is O(nwloglogn) space and O(loglogn) time.

1.1 Setup and Results

We revisit the partial sums problem on the UWRAM and present a simple new algorithm
that significantly improves the space overhead of the previous solutions. Let A be an array
of n w-bit integers. An in-place data structure for the partial sums problem is a data
structure that modifies the input array A, e.g., by replacing some of the entries in A,
to efficiently support operations. In addition to the modified array the data structure
is only allowed to store O(1) of ultrawords. This definition extends the standard in-
place/implicit data structure concept [11, 16, 31,36, 38] to the UWRAM, by allowing a
constant number of ultrawords to be stored instead of (standard) words. Clearly, without
this modification computation on ultrawords is impossible. As in Farzan et. al. [14] we
distinguish between the restricted UWRAM that supports a minimal set of instructions on
ultrawords consisting of addition, subtraction, shifts, and bitwise boolean operations and
the multiplication UWRAM that extends the instruction set of the restricted UWRAM
with a multiplication operation on ultrawords. We show the following main result:

Theorem 1 Given an array A of n w-bit integers, we can construct in-place partial sums

data structures for A that support sum and update operations in O(loglogn) time on a
restricted UWRAM.

Compared to the previous result, Theorem 1 matches the O(loglogn) time bound of
Farzan et. al. [14] (with parameter 7 = ©(loglogn) while improving the space overhead
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from O(nwlogn) to a constant number of ultrawords. This is important in practical
applications since modern vector processors have a very limited number of ultrawords
available.

Technically, our solution is based on a simple and elegant in-place word RAM data
structure, called the Fenwick tree (see Section 3 for a detailed description). The Fenwick
tree support operations in O(logn) by sequentially traversing an implicit tree structure.
We show how to efficiently compute the access pattern on the tree structure in parallel
using prefix sum computations on ultrawords. Then, given the locations to access we use
scattered memory operations to access them all in parallel. In total, this leads to the
exponential improvement of Fenwick trees. The main bottleneck in our algorithm is the
prefix sum computation. Interestingly, if we allow multiplication we can compute prefix
sums in constant time leading to the following Corollary for the multiplication UWRAM:

Corollary 2 Given an array A of n w-bit integers, we can construct in-place partial
sums data structures for A that support sum and update operations in constant time on
a multiplication UWRAM.

Multiplication (or prefix sum computation) is not an AC® operation (it cannot be imple-
mented by a constant depth, polynomial size circuit) and therefore likely not practical
to implement on ultraword. However, Corollary 2 shows that we can achieve significant
improvements on the UWRAM with special operations. Since UWRAM capture modern
processors, we believe it is worth investigating further, and that our work is a first step
in this direction.

1.2 Outline

The paper is organized as follows. In Section 2 and 3 we review the UWRAM model of
computation and the Fenwick tree. In Section 4 we present our UWRAM implementation
of the Fenwick tree. Finally, in Section 4.4 we discuss extensions of the result and open
problems.

2 The Ultra-Wide Word RAM Model

The word RAM model of computation [21] consists of an infinite memory of w-bit words
and an instruction set of arithmetic, boolean, and memory access instructions such as the
ones available in standard programming languages such as C'. We assume that we can
store a pointer into the input in a single word and hence w > log n, where n is the size of
the input. The time complexity of a word RAM algorithm is the number of instructions
and the space complexity is the number of words used by the algorithm.

The ultra-wide word RAM (UWRAM) model of computation [14] extends the word
RAM model with special ultrawords of w? bits. We distinguish between the restricted
UWRAM that supports a minimal set of instructions on ultrawords consisting of addition,
subtraction, shifts, and bitwise boolean operations and the multiplication UWRAM that
additionally supports multiplication. The time complexity is the number of instruction
(on standard words or ultrawords) and the space complexity is the number of (standard)
words used by the algorithm. The restricted UWRAM captures modern vector processor
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Figure 1: The layout of an ultraword of w? divided into w words each of w bits. The
leftmost bit of each word is reserved to be a test bit.

architectures [12,29,34,37]. For instance, the Intel AVX-512 vector extension [34] support
similar operations on 512-bit wide words (i.e., a factor of 8 compared to 64 = 4096).

2.1 Word-Level Parallelism

Due to their similarities, we can adopt many word-level parallelism techniques from the
word RAM to the UWRAM. We briefly review the key primitives and techniques that
we will use.

Let X be an ultraword of w? bits. We often view X as divided into w words of
w consecutive bits each. See Figure 1. We number the words in X from right-to-left
starting from 0 and use the notation X(j) to denote the jth word in X. Similarly,
the bits of each word X (j) are numbered from right-to-left starting from 0. If only the
rightmost ¢ < w words in X are non-zero, we say that X has length ¢. For simplicity in
the presentation, we reserve the leftmost bit of each word to be a test bit for word-level
parallelism operations. One may always remove this assumption at no asymptotic cost,
e.g., by using two words in an ultraword to simulate each single word.

We now show how to implement common operations on ultrawords that we will use
later. Most of these are already available in hardware on modern vector processor archi-
tectures. Componentwise arithmetic and bitwise operation are straightforward to imple-
ment using standard word-level parallelism techniques from the word RAM . For instance,
given ultrawords X and Y, we can compute the componentwise addition, i.e., the ultra-
word Z such that Z(j) = X(j) +Y (j) for j =0,...,w—1 by adding X and Y and &’ing
with the mask (01“~1)* to clear any test bits (we use exponentiation to denote bit rep-
etition, i.e., 031 = 0001). We can also compare X and Y componentwise by |'ing in the
test bits of X, subtracting Y, and masking out the test bits by &’ing with (10“~1)“. The
jth test bit of the result contains a 1 iff X (j) > Y'(j). Given X and another ultraword
T containing only test bits, we can extract the words in X according to the test bits,
i.e., the ultraword E such that E(j) = X (j) if the jth test bit of T"is 1 and E(j) = 0
otherwise. To do so we copy the test bits by a subtracting (0“~1)* from T and &’ing the
result with X. All of the above mentioned operation take constant time on a restricted
UWRAM. Given an ultraword X of length ¢, the prefix sum of X is the ultraword P
of length ¢, such that P(j) = >, X (k). We assume here that the integers computed
in the prefix sum never exceed the maximum size available in a word such that P(j) is
always well-defined. We need the following result.

Lemma 3 Given an ultraword X of length ¢ we can compute the prefix sum of X in
O(log?) time on a restricted UWRAM and in O(1) time on a multiplication UWRADM.



Proof: First consider the restricted UWRAM. We implement a standard parallel prefix-
sum algorithm [26] (see also the survey by Blelloch [6]). For simplicity, we assume that ¢
is a power of two. The algorithm consists of two phases that conceptually construct and
traverse a perfectly balanced binary tree T' of height log ¢ whose leaves are the ¢ words
of X.

Given an internal node v in T', let viere and vyigne denote the left and right child of v,
respectively. The first phase performs a bottom-up traversal of 7" and computes for each
node v an integer b(v). If v is a leaf, b(v) is the corresponding integer in X and if v is an
internal node b(v) = b(viert) + b(vsight). The second phase performs a top-down traversal
of T" and computes an integer ¢(v). If v is the root then ¢(v) = 0 and if v is an internal
node then t(vierr) = t(v) and t(veght) = t(Vieft) + O(Vright). After the second phase the
integers at the leaves is the prefix sum shifted by a single element and missing the last
element. We shift and add the last element to produce the final prefix sum. Since T' is
perfectly balanced we can implement each level of a phase in constant time using shifting
and addition. The final shift and addition of the last element takes constant time. It
follow that the total time is O(log¢). During the computation we only need to maintain
all of the values in a constant number of ultrawords.

Next consider the multiplication instruction set. We can then simply multiply X with
the constant (0“~'1)* and mask out the ¢ rightmost words of the result to produce the
prefix sum. See Hagerup [21] for a detailed description of why this is correct. In total
this uses O(1) time.

[ |

2.2 Memory Access

The UWRAM supports standard memory access operation to read or write a single word
or a sequence of w contiguous words. More interestingly, the UWRAM also supports
scattered access operations that access w memory locations (not necessarily contiguous)
in parallel. Given an ultraword A containing w memory addresses, a scattered read loads
the contents of the addresses into an ultraword X, such that X (j) contains the contents of
memory location A(j). Given two ultrawords A and X scattered write sets the contents
memory location A(j) to be X(j). Scattered memory accesses captures the memory
model used by IBM’s Cell architecture [12]. Scattered memory access operations were
also proposed by Larsen and Pagh [27] in the context of the I/O model of computation.

3 Fenwick Trees

Let A be an array of n w-bit integers and assume for simplicity that n is a power of
two. The Fenwick tree [15,35] is an in-place data structure that replaces the array A as
follows. If n = 1, then leave A unchanged. Otherwise, replace all values at even entries
A[2i] by the sum A[2¢ — 1] + A[2i]. Then, recurse on the subarray A[2,4,...,n]. The
resulting array F' stores a subset of the partial sums of A organized in a tree layout (see
Figure 1).

To answer sum(7) query, we compute a sequence of indices in F' and add the values
in F' at these indices together. Let rmb(z) denote the position of the rightmost bit in an
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Figure 2: A array A and the Fenwick tree F'. The lines above F' indicate the partial
sum of A stored at the rightmost endpoint of the line. For instance, the F[12] = A[9] +
A[10] + A[11] + A[12] =04+ 1+3+4=28.

integer x. Define the sum sequence i1, ...,i; given by if = i and i} = i} ; — ormb(ii_1)
for j = 2,...,r. The final element ¢ is 0. We compute and return F[i§] + F[i] +
-+« + F[i{_,]. For instance, for i = 13 = (1101), the sum sequence is 13,12,8,0 =
(1101)s, (1100)5, (1000)s, (0000)s. Hence, sum(13) = F[13] + F[12] + F[8] = 1 + 8 + 11 =
20 = A[1]+4- - -+ A[13]. We access at most O(logn) entries in F' and hence the total time
for sum is O(logn). Note that we can always recover the original array A using the sum
operation, since A[i] = sum(i) —sum(i — 1).

To compute update(i, A), we compute a sequence of indices in F' and add A to the
values in F' at each of these indices. Define the update sequence if,... i} given by
it =i and i =1} | + 2mb(-1) for j = 2,...,t. The final element iy is 2n. We set
Fliy] = FiY] + A, ..., FliY] = F[i{_,] + A. For instance, for i = 13 the update sequence
is 13, 14,16, 32. Hence, update(13,5) adds 5 to F[13], F[14], and F[16]. Similar to the
sum operation, the total running time for update is O(logn).

4 Partial Sums on the Ultra-Wide Word RAM

We now present an efficient implementation of Fenwick trees on the UWRAM model of
computation. We only store the Fenwick tree, as the array F' described in Section 3 and
a constant number of ultraword constants that we use for computation. We first show
some basic properties of the sum and update sequences in Section 4.1, before presenting
our UWRAM implementation of the operations in Sections 4.2 and 4.3.

4.1 Computing Sum and Update Sequences

To compute the sum and update sequences we cannot directly apply the recursive def-
initions, since this would need Q(logn) steps. Instead, we show how to express the
sequences as a prefix sum that we can efficiently derive from the input integer . Then,
using Lemma 3 we will show how to compute it in on the UWRAM in the following
sections.

Let 7f,...,¢; and i{,..., ¢} be the sum sequence and update sequences, respectively,
for i as defined in Section 3. Define the offset sum sequence of,...,0;_; and offset update
sequence oY,... o4 ; for ¢ to be the sequences of differences of the sum and update
sequences, respectively, that is, oj =4}, —j, for j=1,...,7 — 1 and o =i}, ; — 7, for
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Figure 3: Computing the sum sequence for i = 13 = (1011);. Words with 0 are left
blank. I contains duplicates of 7. M is a precomputed mask. O is the bitwise & of I and
M. P is the prefix sum of the non-zero words in O. P’ is P shifted left by one word. S
is the sum sequence obtained by componentwise subtraction of P’ from I.

j=1,...,t —1. By definition, we have that

i =i+ (Zok> i =i+ (Zoz) (1)

k<j k<j

We also have that o = —2™b05) and hence each sum offset is a power of 2 corre-
sponding to the rightmost 1 bit in 7. Thus, o] corresponds to the rightmost 1 in ] = 1.
Adding of = —2™2(®) (i.e., subtracting 2™P()) ”clears” the rightmost 1 bit in i. Thus, 0§
corresponds to the 1 bit in ¢ immediately to left of the rightmost 1 bit. In general, we have
that o} = —2% where b is the position of the jth rightmost bit in i, for j =1,...,r — 1.
For instance, for i« = 13 = (1101)y the offset sum sequence is —1, —4, —8 corresponding
to the three 1 bits in the binary representation of 7.

Similarly, for the update offsets, we have that o} = 2™mb(i)  Hence, o} corresponds to
rightmost 1 in i. Adding o = 2™P(1) clears the rightmost consecutive group of 1 bits
in ¢ and flips the following 0 bit to 1. In general, we have that of = 2° where b is the
position of the jth rightmost 0 to the left of rmb(i), for j = 2,... ¢ — 1. For instance, for
i =13 = (01101), the offset update sequence is 1,2, 16.

4.2 Sum

To compute the sum(i), the main idea is to first construct the sum sequence in an ul-
traword, then use a scattered read to retrieve the entries from F' in parallel into another
ultraword, and finally sum the entries of this ultraword to compute the final result. We
do this in 3 steps as follows. See Figure 3 for an example of the computed ultrawords
during the algorithm.

Step 1: Compute Offsets Compute the ultraword O such that O(j) = 27 if —27 is
an offset for ¢+ and 0 otherwise, i.e., the non-zero entries of O is the offset sequence for
1. To do so we first construct the ultraword I consisting of logn duplicates of i, i.e.,



I{j) =ifor j =1,...,logn. We then compute the bitwise & of I and a mask M, such
that M(j) = 2/ for j = 1,...,logn, i.e., bit j of M(j) = 1 and the other bits of M (j)
are 0. By the discussion in Section 4.1 the resulting ultraword is O.

On the multiplication UWRAM we can construct I in constant time by multiplying
i with (0“7'1)“. On the restricted UWRAM we can construct I in O(loglogn) time by
repeatedly doubling using shifts and bitwise |. The rest of the computation takes constant
time in both models.

Step 2: Compute Sum Sequence Compute an ultraword S of length logn whose
non-zero entries is the sum sequence 47,...,7,_;. To do so we first compute the prefix
sum P of the non-zero words of O, i.e., we compute the prefix sum of O and then extract
the words corresponding to non-zero words in O. Then we shift P by 1 word to the left
to produce an ultraword P’ and finally subtract P’ from I to produce an ultraword S.
By (1) the non-zero words in S is the sum sequence for 7.

By Lemma 3 the prefix sum computation takes constant time on a multiplication
UWRAM and O(loglogn) time on a restricced UWRAM. The remaining steps take con-
stant time.

Step 3: Compute Sum Finally, we compute F[i§]+F[i§]4- - -+ F[i_,]. To doso we do
a scattered read on S to retrieve F[iY], ..., F[i’ ;] into a single ultraword F’ and compute
a prefix sum on F’. The sum is then the last word in the result. The scattered read takes
constant time. The prefix sum computation takes constant time on a multiplication
UWRAM and O(loglogn) time on a restricted UWRAM. We assume here that F[0] = 0.
If not we may simply temporarily set F'[0] = 0 during the computation. Also note that
it suffices to perform the first phase of the prefix sum computation as discussed in the
proof of Lemma 3 since we only need the sum of all of the retrieved entries.

In total, the sum operation takes constant time on a multiplication UWRAM and
O(loglogn) time on a restricted UWRAM.

4.3 Update

We compute update(i, A) similar to our algorithm for sum. We describe how to modify
each step of sum.

In step 1, we modify the computation of the ultraword O such that it now contains
the update offsets, that is, O(j) = 27 if 27 is an update offset for i and 0 otherwise. To do
so we now construct a mask M such that M (j) contains a 0 in bit j if j is to the left of
rmb(i) and 1 elsewhere. We then compute a bitwise | of M and I and negate the result.
Finally, we set word rmb(i) of the result to be 2™>®. By the discussion in Section 1 the
resulting ultraword is O.

In step 2, since O now contains the offsets and not the negative offsets, we change
the final subtraction to an addition to produce the update sequence stored in a single
ultraword U.

In step 3, we do a scattered read on U to retrieve F[i{],..., F[i*_,] into a single
ultraword F’. We then duplicate A to all words in an ultraword D and add D to F’ to
produce an ultraword F”. Finally, we do a scattered write on U and F” to update F'.



The changes are straightforward to implement in the same time as above. Hence, the
update operation takes constant time on a multiplication UWRAM and O(loglogn) time
on a restricted UWRAM.

In summary, we use O(loglogn) time on a restricced UWRAM and O(1) time on a
multiplication UWRAM for both operation. We only store the Fenwick tree in the array
I and a constant number of ultrawords. This completes the proof of Theorem 1 and
Corollary 2.

4.4 Extensions and Open Problems

We sometimes also consider the following operations in the context of partial sums:
e access(i): return Ali].
e select(j): return the smallest ¢ such that sum(i) > j

As mentioned access is trivial to support since A(i) = sum(i)—sum(i—1). In contrast, the
select operation do not seem to easily lend itself to an efficient parallel implementation on
the UWRAM. While it is straightforward to implement in O(logn) time by ”top-down”
traversal of the Fenwick tree our techniques do not appear be useful to speed up this
solution on the UWRAM. We leave it as an open problem to investigate the complexity
of the select operation on the UWRAM.

Our results leave the precise relation between UWRAM and RAMBO model of com-
putation open. While Farzan et al. [14] show how to simulate RAMBO algorithms with
a small overhead in space our results show that a direct approach to designing UWRAM
algorithms can produce significantly better results. We wonder what the precise relation
between the models are and if stronger simulation results are possible.
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