Skip to main content

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12337))

  • 625 Accesses

Abstract

In the classical k-means problem, we are given a data set \(\mathcal {D}\subseteq \mathbb {R}^{\ell }\) and an integer k. The object is to select a set \(S\subseteq \mathcal {R}^{\ell }\) of size at most k such that each point in \(\mathcal {D}\) is connected to the closet cluster in S with minimum total squared distances. However, in some real-life applications, it is more desirable and beneficial to pay a small penalty for not connecting some outliers in \(\mathcal {D}\) that are too far away from most points. As a result, we are motivated to study the k-means problem with penalties, for which we propose a \((6.357 + \varepsilon )\)-approximation algorithm via the primal-dual technique, improving the previous best approximation ratio of \(19.849 + \epsilon \) in [7] also by using the primal-dual technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for \(k\)-means and Euclidean \(k\)-median by primal-dual algorithms. In: Proceedings of FOCS, pp. 61–72 (2017)

    Google Scholar 

  2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75, 245–248 (2009)

    Article  Google Scholar 

  3. Arthur, D., Vassilvitskii, S.: \(k\)-means++: the advantages of careful seeding. In: Proceedings of SODA, pp. 1027–1035 (2007)

    Google Scholar 

  4. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for \(k\)-means and \(k\)-median in Euclidean and minor-free metrics. SIAM J. Comput. 48, 644–667 (2019)

    Article  MathSciNet  Google Scholar 

  5. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Mach. Learn. 56, 9–33 (2004)

    Article  Google Scholar 

  6. Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for \(k\)-means clustering based on weak coresets. In: Proceedings of SoCG, pp. 11–18 (2007)

    Google Scholar 

  7. Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm for the k-means problem with penalties. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458, pp. 170–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0_15

    Chapter  Google Scholar 

  8. Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for \(k\)-means in doubling metrics. SIAM J. Comput. 48, 452–480 (2019)

    Article  MathSciNet  Google Scholar 

  9. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and \(k\)-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48, 274–296 (2001)

    Article  MathSciNet  Google Scholar 

  10. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverma, R.: A local search approximation algorithm for \(k\)-means clustering. Comput. Geom. 28, 89–112 (2004)

    Article  MathSciNet  Google Scholar 

  11. Li, M., Xu, D., Yue, J., Zhang, D., Zhang, P.: The seeding algorithm for \(k\)-means problem with penalties. J. Comb. Optim. 39, 15–32 (2020)

    Article  MathSciNet  Google Scholar 

  12. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  13. Makarychev, K., Makarychev, Y., Razenshteyn, I.: Performance of Johnson-Lindenstrauss transform for \(k\)-means and \(k\)-medians clustering. In: Proceedings of STOC, pp. 1027–1038 (2019)

    Google Scholar 

  14. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003)

    Book  Google Scholar 

  15. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  16. Zhang, D., Hao, C., Wu, C., Xu, D., Zhang, Z.: Local search approximation algorithms for the \(k\)-means problem with penalties. J. Comb. Optim. 37, 439–453 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first two authors are supported by Natural Science Foundation of China (No. 11871081). The third author is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant 06446, and Natural Science Foundation of China (Nos. 11771386, 11728104). The fourth author is supported by Higher Educational Science and Technology Program of Shandong Province (No. J17KA171) and Natural Science Foundation of Shandong Province (No. ZR2019MA032) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, C., Xu, D., Du, D., Li, M. (2020). A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties. In: Chen, J., Feng, Q., Xu, J. (eds) Theory and Applications of Models of Computation. TAMC 2020. Lecture Notes in Computer Science(), vol 12337. Springer, Cham. https://doi.org/10.1007/978-3-030-59267-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59267-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59266-0

  • Online ISBN: 978-3-030-59267-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics