Skip to main content

Machine Learning Based Early Fall Detection for Elderly People with Neurological Disorder Using Multimodal Data Fusion

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

Fall is deemed to be one of the critical problems for the elderly patient having neurological disorders as it may cause injury or death. It turns to be a public health concern and attracts researchers to detect fall using sensing devices wearable, portable, and imaging. With the availability of low cost pervasive sensing elements, advancement of ubiquitous computing and better understanding of machine learning approaches, researchers have employing various machine learning approaches in detecting fall from the sensor data. In this paper, we have proposed a recurrent neural network (RNN)-based framework for detecting fall/daily activity of a patient having a neurological disorder using Internet of things and then manage the patient by referring to doctor. If an anomaly is detected in the daily activity and notify caregiver/family member if fall is detected. The RNN based fall detection model fused knowledge from both the smartphone/wearable and camera installed on the wall and ceiling. The proposed RNN is trained with open-labeled and UR data-sets and is compared with the support vector machine and random forest for these two data-sets. The performance evaluation shows the proposed method is effecting and outperforms its counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M., Al Mamun, S.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  2. Bak, T.H., et al.: What wires together dies together. Cortex J. Devoted Study Nerv. Syst. Behav. 48(7), 936–944 (2012)

    Article  Google Scholar 

  3. Finkbeiner, S.: Huntington’s disease. Cold Spring Harb. Perspect. Biol. 3(6) (2011)

    Google Scholar 

  4. Carroll, W.M.: The global burden of neurological disorders. Lancet Neurol. 18(5), 418–419 (2019)

    Article  Google Scholar 

  5. Journal of National Institute of Neurosciences Bangladesh. Accessed 10 June 2020

    Google Scholar 

  6. Mahmud, M., et al.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  7. Mahmud, M., Shamim Kaiser, M., Hussain, A.: Deep learning in mining biological data. arXiv:2003.00108 [cs, q-bio, stat], pp. 1–36, February 2020

  8. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 136–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_14

    Chapter  Google Scholar 

  9. Kaiser, M.S., et al.: Advances in crowd analysis for urban applications through urban event detection. IEEE Trans. Intell. Transp. Syst. 19(10), 3092–3112 (2018)

    Article  Google Scholar 

  10. Zohora, M.F., et al. Forecasting the risk of type ii diabetes using reinforcement learning. In: Proceedings of the ICIEV, pp. 1–6 (2020)

    Google Scholar 

  11. Watkins, J., Fabietti, M., Mahmud, M.: Sense: a student performance quantifier using sentiment analysis. In: Proceedings of the IJCNN, pp. 1–6 (2020)

    Google Scholar 

  12. Mahmud, M., et al.: A brain-inspired trust management model to assure security in a cloud based iot framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018). https://doi.org/10.1007/s12559-018-9543-3

    Article  Google Scholar 

  13. Tania, M.H., et al.: Assay type detection using advanced machine learning algorithms. In: Proceedings of the SKIMA, pp. 1–8 (2019)

    Google Scholar 

  14. Lam, S., et al.: The future E-living for elderly. Int. J. Online Biomed. Eng. (iJOE) 6(1), 4–11 (2010)

    Google Scholar 

  15. Afsana, F., Mamun, S.A., Kaiser, M.S., Ahmed, M.R.: Outage capacity analysis of cluster-based forwarding scheme for body area network using nano-electromagnetic communication. In: Proceedings of the EICT, pp. 383–388 (2015)

    Google Scholar 

  16. Asif-Ur-Rahman, Md, et al.: Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things. IEEE Internet Things J. 6(3), 4049–4062 (2018)

    Article  Google Scholar 

  17. Arunvivek, J., et al.: Framework development in home automation to provide control and security for home automated devices. Indian J. Sci. Technol. 8 (2015)

    Google Scholar 

  18. Tsai, T.-H., et al.: Implementation of fall detection system based on 3D skeleton for deep learning technique. IEEE Access 7, 153049–153059 (2019)

    Article  Google Scholar 

  19. Automatic Fall Monitoring: A Review

    Google Scholar 

  20. Ali, S.F., et al.: Using temporal covariance of motion and geometric features via boosting for human fall detection. Sensors (Basel, Switzerland) 18(6) (2018)

    Google Scholar 

  21. Doulamis, A., et al.: A real-time single-camera approach for automatic fall detection. ISPRS Comm. V Close Range Image meas. Tech. 38, 207–212 (2010)

    Google Scholar 

  22. Tzallas, A.T., et al.: PERFORM: a system for monitoring, assessment and management of patients with Parkinson’s disease. Sensors 14(11), 21329–21357 (2014)

    Article  Google Scholar 

  23. Pereira, C., Macedo, P., Madeira, R.N.: Mobile integrated assistance to empower people coping with Parkinson’s disease. In: Proceedings of the ACM SIGACCESS, pp. 409–410. Association for Computing Machinery, New York (2015)

    Google Scholar 

  24. Baga, D., et al.: PERFORM: a platform for monitoring and management of chronic neurodegenerative diseases: the Parkinson and amyotrophic lateral sclerosis case. IEEE Conference Publication (2009)

    Google Scholar 

  25. Punin, C., Barzallo, B., Huerta, M., Bermeo, A., Bravo, M., Llumiguano, C.: Wireless devices to restart walking during an episode of FOG on patients with Parkinson’s disease. IEEE Conference Publication (2017)

    Google Scholar 

  26. García-Magariño, I., Varela-Aldas, J., Palacios-Navarro, G., Lloret, J.: Fog computing for assisting and tracking elder patients with neurodegenerative diseases. Peer-to-Peer Netw. Appl. 12(5), 1225–1235 (2019). https://doi.org/10.1007/s12083-019-00732-4

    Article  Google Scholar 

  27. LeMoyne, R., Tomycz, N., Mastroianni, T., McCandless, C., Cozza, M., Peduto, D.: Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning. IEEE Conference Publication (2015)

    Google Scholar 

  28. Kwolek, B., et al.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  29. Wertner, A., et al.: An open labelled dataset for mobile phone sensing based fall detection. In: Proceedings of Computing, Networking and Services on 12th EAI International Conference on Mobile and Ubiquitous Systems, pages 277–278 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumitu Tasnim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nahiduzzaman, M., Tasnim, M., Newaz, N.T., Kaiser, M.S., Mahmud, M. (2020). Machine Learning Based Early Fall Detection for Elderly People with Neurological Disorder Using Multimodal Data Fusion. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics