Skip to main content

Towards Artificial Intelligence Driven Emotion Aware Fall Monitoring Framework Suitable for Elderly People with Neurological Disorder

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

The contemporary world’s emerging issue is how the mental health and falling of a senior citizen with a neurological disorder can be maintained living at their homes as the number of aged people is increasing with the rising of life expectancy. With the advancement of the Internet of Things (IoT) and big data analytics, several works had been done on smart home health care systems that deal with in house monitoring for fall detection. Despite so much work, the challenges remain for not considering emotional care in the fall detection system for the old ones. As a remedy to the problems mentioned above, we propose an emotion aware fall monitoring framework using IoT, Artificial Intelligence (AI) Algorithms, and Big data analytics, which will deal with emotion recognition of the aged people, predictions about health conditions, and real-time fall monitoring. In the case of an emergency, the proposed framework alerts about a situation of urgency to the predefined caregiver. A smart ambulance or mobile clinic will reach the older adult’s location at minimum time.

M. J. Al Nahian and T. Ghosh—Have contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agüera-Ortiz, L., et al.: Depression in the elderly. Consensus statement of the Spanish psychogeriatric association. Front. Psychiatry 11, 380 (2020)

    Article  Google Scholar 

  2. Al Banna, M.H., Haider, M.A., Al Nahian, M.J., Islam, M.M., Taher, K.A., Kaiser, M.S.: Camera model identification using deep CNN and transfer learning approach. In: ICREST. IEEE (2019)

    Google Scholar 

  3. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 136–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_14

    Chapter  Google Scholar 

  4. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units. arXiv preprint arXiv:1611.01491 (2016)

  5. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: Proceedings of IEEE CVPR, pp. 248–255 (2009)

    Google Scholar 

  6. Fabietti, M., et al.: Neural network-based artifact detection in LFP recorded from chronically implanted neural probes. In: Proceedings of IJCNN, pp. 1–8 (2020)

    Google Scholar 

  7. Ghaffar, A., Dehghani-Sanij, A.A., Xie, S.Q.: A review of gait disorders in the elderly and neurological patients for robot-assisted training. Disabil. Rehabil.: Assist. Technol. 15(3), 256–270 (2020)

    Google Scholar 

  8. Greff, K., et al.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  9. Heslop, K., et al.: Assessing falls risk in older adult mental health patients: a western Australian review. Int. J. Ment. Health Nurs. 21(6), 567–575 (2012)

    Article  Google Scholar 

  10. Hill, A.M., et al.: Measuring falls events in acute hospitals-a comparison of three reporting methods to identify missing data in the hospital reporting system. J. Am. Geriatr. Soc. 58(7), 1347–1352 (2010)

    Article  Google Scholar 

  11. Homann, B., et al.: The impact of neurological disorders on risk for falls in community dwelling elderly: a case-controlled study. BMJ Open 3(11), e003367 (2013)

    Article  Google Scholar 

  12. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  13. Kaiser, M.S., et al.: Advances in crowd analysis for urban applications through urban event detection. IEEE Trans. Intell. Transp. Syst. 19(10), 3092–3112 (2018)

    Article  Google Scholar 

  14. Khraief, C., Benzarti, F., Amiri, H.: Elderly fall detection based on multi-stream deep convolutional networks. Multimed. Tools Appl. 79, 19537–19560 (2020)

    Article  Google Scholar 

  15. Lord, S., Sherrington, C., Menz, H., Close, J.: Falls in Older People: Risk Factors and Strategies for Prevention. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  16. Luque, R., Casilari, E., Morón, M.J., Redondo, G.: Comparison and characterization of android-based fall detection systems. Sensors 14(10), 18543–18574 (2014)

    Article  Google Scholar 

  17. Mahmud, M., Kaiser, M.S., Hussain, A.: Deep learning in mining biological data. arXiv:2003.00108 [cs, q-bio, stat] abs/2003.00108, pp. 1–36 (2020)

  18. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  19. Mahmud, M., et al.: A brain-inspired TMM to assure security in a cloud based IoT framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018)

    Article  Google Scholar 

  20. Martínez-Villaseñor, L., et al.: Up-fall detection dataset: a multimodal approach. Sensors 19(9), 1988 (2019)

    Article  Google Scholar 

  21. Miah, Y., et al.: Performance comparison of ML techniques in identifying dementia from open access clinical datasets. In: Proceedings of ICACIn, pp. 69–78 (2020)

    Google Scholar 

  22. Noor, M.B.T., et al.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) BI 2019. LNCS, vol. 11976, pp. 115–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37078-7_12

    Chapter  Google Scholar 

  23. Orojo, O., Tepper, J., McGinnity, T., Mahmud, M.: A multi-recurrent network for crude oil price prediction. In: Proceedings SSCI, pp. 2940–2945 (2019)

    Google Scholar 

  24. Rabby, G., et al.: TeKET: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. (2020). https://doi.org/10.1007/s12559-019-09706-3

    Article  Google Scholar 

  25. Rahman, S., Al Mamun, S., Ahmed, M.U., Kaiser, M.S.: PHY/MAC layer attack detection system using neuro-fuzzy algorithm for IoT network. In: Proceedings of ICEEOT, pp. 2531–2536 (2016)

    Google Scholar 

  26. Ryu, Y.M., Roche, J.P., Brunton, M.: Patient and family education for fall prevention: involving patients and families in a fall prevention program on a neuroscience unit. J. Nurs. Care Qual. 24(3), 243–249 (2009)

    Article  Google Scholar 

  27. Scheffer, A.C., et al.: Fear of falling: measurement strategy, prevalence, risk factors and consequences among older persons. Age Ageing 37(1), 19–24 (2008)

    Article  Google Scholar 

  28. Stevens, J.A., Sogolow, E.D.: Gender differences for non-fatal unintentional fall related injuries among older adults. Injury Prev. 11(2), 115–119 (2005)

    Article  Google Scholar 

  29. Sumi, A.I., Zohora, M.F., Mahjabeen, M., Faria, T.J., Mahmud, M., Kaiser, M.S.: fASSERT: a fuzzy assistive system for children with autism using Internet of Things. In: Wang, S., et al. (eds.) BI 2018. LNCS (LNAI), vol. 11309, pp. 403–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_38

    Chapter  Google Scholar 

  30. Tania, M.H., et al.: Assay type detection using advanced machine learning algorithms. In: Proceedings of SKIMA, pp. 1–8 (2019)

    Google Scholar 

  31. Thurman, D.J., Stevens, J.A., Rao, J.K.: Practice parameter: assessing patients in a neurology practice for risk of falls (an evidence-based review). Neurology 70(6), 473–479 (2008)

    Article  Google Scholar 

  32. Watkins, J., Fabietti, M., Mahmud, M.: Sense: a student performance quantifier using sentiment analysis. In: Proceedings of IJCNN, pp. 1–6 (2020)

    Google Scholar 

  33. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019)

    Article  Google Scholar 

  34. Zohora, M.F., et al.: Forecasting the risk of type ii diabetes using reinforcement learning. In: Proceedings of ICIEV. pp. 1–6 (2020)

    Google Scholar 

Download references

Acknowledgement

This research received funding from ICT division of the Government of the People’s Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jaber Al Nahian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Nahian, M.J., Ghosh, T., Uddin, M.N., Islam, M.M., Mahmud, M., Kaiser, M.S. (2020). Towards Artificial Intelligence Driven Emotion Aware Fall Monitoring Framework Suitable for Elderly People with Neurological Disorder. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics