Skip to main content

Temporal-Spatial-Spectral Investigation of Brain Network Dynamics in Human Speech Perception

  • Conference paper
  • First Online:
Brain Informatics (BI 2020)

Abstract

Human speech function, as an incredible manifestation of human intelligence, entails intricate spatiotemporal coordination of brain networks transiently and accurately. Current investigation using neuroimaging and electrophysiological techniques laid the foundation of our understanding regarding the brain activities in the spatial, temporal, and spectral domains. However, a comprehensive view integrating these three aspects yet to be achieved by not only adopting multi- modalities of the data acquisition system but also employing algorithms to integrate them into a systematic framework. Thus, this study conducted a passive listening task using words and white noises as acoustic stimuli and utilized high-density electroencephalography (EEG) system with effective connectivity analysis to reconstruct the brain network dynamics with high temporal and spectral resolution. Besides, we introduced the high-spatial-resolution functional magnetic resonance imaging- (fMRI-) constraints into a representational similarity analysis to examine the functional performance of spatially distributed networks over time. Our results revealed that during speech perception, networks for auditory and higher cognition functioned along the ventral stream via theta and gamma oscillations and exhibited hierarchical responsive differences between word and noise conditions. Speech motor programming networks participated along the dorsal stream mainly in the beta band during a later period of speech perception. Alpha band activity served as a mediation for the dual pathway through oscillatory suppression. These functional networks progressed parallelly for the completion of the complex speech perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  2. O’Neill, G.C., Tewarie, P., Vidaurre, D., Liuzzi, L., Woolrich, M.W., Brookes, M.J.: Dynamics of large-scale electrophysiological networks: a technical review. Neuroimage 180(Part B), 559–576 (2018). ISSN 1053-8119

    Google Scholar 

  3. Saur, D., Kreher, B.W., Schnell, S., et al.: Ventral and dorsal pathways for language. Proceeding Natl. Acad. Sci. 105, 18035–18040 (2008)

    Article  Google Scholar 

  4. Schoffelen, J.-M., Hultén, A., Lam, N., et al.: Frequency-specific directed interactions in the human brain network for language. Proc. Natl. Acad. Sci. 114, 8083–8088 (2017)

    Article  Google Scholar 

  5. Kriegeskorte, N., Mur, M., Bandettini, P.: Representational similarity analysis – connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008)

    Article  Google Scholar 

  6. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018). https://doi.org/10.1109/TNNLS.2018.2790388

    Article  MathSciNet  Google Scholar 

  7. Price, C.: A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 65, 816–847 (2012)

    Article  Google Scholar 

  8. Vigneau, M., Beaucousin, V., Hervé, P.Y., et al.: Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2016)

    Article  Google Scholar 

  9. Hickok, G.: The cortical organization of speech processing: feedback control and predictive coding the context of a dual-stream model. J. Commun. Disord. 45, 393 (2012)

    Article  Google Scholar 

  10. Zhao, B., Dang, J., Zhang, G.: A neuro-experimental evidence for the motor theory of speech perception. In: INTERSPEECH, pp. 2441–2445 (2017)

    Google Scholar 

  11. Hickok, G., Costanzo, M., Capasso, R., Miceli, G.: The role of Broca’s area in speech perception: evidence from aphasia revisited. Brain Lang. 119, 214–220 (2011)

    Article  Google Scholar 

  12. Liberman, A., Mattingly, G.: The motor theory of speech perception revised. Cognition 21, 1–36 (1985)

    Article  Google Scholar 

  13. Anne-Lise, G., David, P.: Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012)

    Article  Google Scholar 

  14. Liu, L., Zhang, Y., Zhou, Q., et al.: Auditory-articulatory neural alignment between listener and speaker during verbal communication. Cereb. Cortex 30, 942–951 (2019)

    Article  Google Scholar 

  15. Giraud, A.L., Poeppel, D.: Speech perception from a neurophysiological perspective. In: Poeppel, D., Overath, T., Popper, A., Fay, R. (eds.) The Human Auditory Cortex. Springer Handbook of Auditory Research, vol. 43, pp. 225–260. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-2314-0_9

    Chapter  Google Scholar 

  16. Poeppel, D., Emmorey, K., Hickok, G., Pylkkänen, L.: Towards a new neurobiology of language. J. Neurosci. 32(2), 14125–14131 (2012)

    Article  Google Scholar 

  17. Weisz, N., Hartmann, T., Müller, N., Lorenz, I., Obleser, J.: Alpha rhythms in audition: cognitive and clinical perspectives. Front. Psychol. 2, 73 (2011)

    Article  Google Scholar 

  18. Mayer, A., Schwiedrzik, C.M., Wibral, M., Singer, W., Melloni, L.: Expecting to see a letter: alpha oscillations as carriers of top-down sensory predictions. Cereb. Cortex 26, 3146–3160 (2015)

    Article  Google Scholar 

  19. Klimesch, W., Sauseng, P., Hanslmayr, S.: EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res. Rev. 53, 63–88 (2007)

    Article  Google Scholar 

  20. Foxe, J.J., Snyder, A.C.: The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front. Psychol. 2, 154 (2011). https://doi.org/10.3389/fpsyg.2011.00154

    Article  Google Scholar 

  21. Mcfarland, D.J., Miner, L.A., Vaughan, T.M., Wolpaw, J.R.: Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12, 177–186 (2000)

    Article  Google Scholar 

  22. Oostenveld, R., Praamstra, P.: The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 112, 713–719 (2001)

    Article  Google Scholar 

  23. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9 (2004)

    Article  Google Scholar 

  24. Mullen, T.R., Kothe, C.A.E., Chi, Y.M., et al.: Real-time neuroimaging and cognitive monitoring using wearable Dry EEG. IEEE Trans. Biomed. Eng. 62, 2553–2567 (2015)

    Article  Google Scholar 

  25. Sheng-Hsiou, H., Luca, P.T., Jason, P., et al.: Modeling brain dynamic state changes with adaptive mixture independent component analysis. NeuroImage 183, 47–61 (2018)

    Article  Google Scholar 

  26. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. Off. J. Soc. Neurosci. 35, 3293–3297 (2015)

    Article  Google Scholar 

  27. Sameshima, K., Baccalá, L.A.: Using partial directed coherence to describe neuronal ensemble interactions. J. Neurosci. Methods 94, 93–103 (1999)

    Article  Google Scholar 

  28. von Stein, A., Sarnthein, J.: Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313 (2000)

    Article  Google Scholar 

  29. Morillon, B., Liégeois-Chauvel, C., Arnal, L.H., et al.: Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study. Front. Psychol. 3, 248 (2012)

    Article  Google Scholar 

  30. Thornton, D., Harkrider, A.W., Jenson, D., Saltuklaroglu, T.: Sensorimotor activity measured via oscillations of EEG mu rhythms in speech and non-speech discrimination tasks with and without segmentation demands. Brain Lang. 187, 62–73 (2018). ISSN 0093-934X. S0093934X16301274

    Google Scholar 

Download references

Acknowledgements

This study is supported in part by JSPS KAKENHI Grant (20K11883), and in part by National Natural Science Foundation of China (No. 61876126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaoyan Zhang or Jianwu Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, B., Zhang, G., Dang, J. (2020). Temporal-Spatial-Spectral Investigation of Brain Network Dynamics in Human Speech Perception. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds) Brain Informatics. BI 2020. Lecture Notes in Computer Science(), vol 12241. Springer, Cham. https://doi.org/10.1007/978-3-030-59277-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59277-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59276-9

  • Online ISBN: 978-3-030-59277-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics