Skip to main content

Conditional Generative Adversarial Network for Predicting 3D Medical Images Affected by Alzheimer’s Diseases

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12329))

Included in the following conference series:

Abstract

Predicting the evolution of Alzheimer’s disease (AD) is important for accurate diagnosis and the development of personalized treatments. However, learning a predictive model is challenging since it is difficult to obtain a large amount of data that includes changes over a long period of time. Conditional Generative Adversarial Networks (cGAN) may be an effective way to generate images that match specific conditions, but they are impractical to generate 3D images due to memory resource limitations. To address this issue, we propose a novel cGAN that is capable of synthesizing MR images at different stages of AD (i.e., normal, mild cognitive impairment, and AD). The proposed method consists of a 2D generator that synthesizes an image according to a condition with the help of 2D and 3D discriminators that evaluate how realistic the synthetic image is. We optimize both the 2D GAN loss and the 3D GAN loss to determine whether multiple consecutive 2D images generated in a mini-batch have real or fake appearance in 3D space. The proposed method can generate smooth and natural 3D images at different conditions by using a single network without large memory requirements. Experimental results show that the proposed method can generate better quality 3D MR images than 2D or 3D cGAN and can also boost the classification performance when the synthesized images are used to train a classification model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Cohen, A., Klang, E., Raskin, S.P., Amitai, M.M., Greenspan, H.: Virtual PET images from CT data using deep convolutional networks: initial results. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 49–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_6

    Chapter  Google Scholar 

  2. Choi, H., Kang, H., Lee, D.S., The Alzheimer’s Disease Neuroimaging Initiative: Predicting aging of brain metabolic topography using variational autoencoder. Front. Aging Neurosci. 10, 212 (2018). https://doi.org/10.3389/fnagi.2018.00212

  3. Choi, Y., Choi, M.J., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. CoRR abs/1711.09020 (2017). http://dblp.uni-trier.de/db/journals/corr/corr1711.html

  4. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  5. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS, pp. 5767–5777 (2017). http://dblp.uni-trier.de/db/conf/nips/nips2017.html

  6. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NIPS, December 2017

    Google Scholar 

  7. Jack, C., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008). https://doi.org/10.1002/jmri.21049

    Article  Google Scholar 

  8. Jung, E., Chikontwe, P., Zong, X., Lin, W., Shen, D., Park, S.: Enhancement of perivascular spaces using densely connected deep convolutional neural network. IEEE Access 7(8), 18382–18391 (2019). https://doi.org/10.1109/ACCESS.2019.2896911

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations (2014)

    Google Scholar 

  10. Lei, Y., et al.: MRi-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med. Phys. 46(8), 3565–3581 (2019). https://doi.org/10.1002/mp.13617. https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13617

  11. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  12. Sohail, M., Riaz, M.N., Wu, J., Long, C., Li, S.: Unpaired multi-contrast MR image synthesis using generative adversarial networks. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 22–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_3

    Chapter  Google Scholar 

  13. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning (2017). https://arxiv.org/abs/1610.09585

  14. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  15. Prokopenko, D., Stadelmann, J., Schulz, H., Renisch, S., Dylov, D.: Synthetic CT generation from MRI using improved DualGAN. arXiv:1909.08942, September 2019

  16. Pumarola, A., Agudo, A., Martinez, A.M., Sanfeliu, A., Moreno-Noguer, F.: GANimation: one-shot anatomically consistent facial animation. Int. J. Comput. Vis. 128(3), 698–713 (2019). https://doi.org/10.1007/s11263-019-01210-3

    Article  Google Scholar 

  17. Romero, A., Arbelaez, P., Van Gool, L., Timofte, R.: SMIT: stochastic multi-label image-to-image translation. In: 2019 IEEE International Conference on Computer Vision (ICCV), December 2018

    Google Scholar 

  18. Dar, S.U.H., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Google Scholar 

  19. Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 218–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_14

    Chapter  Google Scholar 

  20. Wegmayr, V., Horold, M., Buhmann, J.: Generative aging of brain MRI for early prediction of MCI-AD conversion. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1042–1046, April 2019. https://doi.org/10.1109/ISBI.2019.8759394

  21. Welander, P., Karlsson, S., Eklund, A.: Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of CycleGAN and UNIT. arXiv preprint arXiv:1806.07777, June 2018

  22. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

    Chapter  Google Scholar 

  23. Zhao, Q., Adeli, E., Honnorat, N., Leng, T., Pohl, K.M.: Variational AutoEncoder for regression: application to brain aging analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 823–831. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_91

    Chapter  Google Scholar 

  24. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.2017.244

Download references

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2019R1C1C1008727) and the MSIT (Ministry of Science, ICT), Korea, under the High-Potential Individuals Global Training Program (2019-0-01557) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, E., Luna, M., Park, S.H. (2020). Conditional Generative Adversarial Network for Predicting 3D Medical Images Affected by Alzheimer’s Diseases. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.d.C. (eds) Predictive Intelligence in Medicine. PRIME 2020. Lecture Notes in Computer Science(), vol 12329. Springer, Cham. https://doi.org/10.1007/978-3-030-59354-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59354-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59353-7

  • Online ISBN: 978-3-030-59354-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics