Skip to main content

Balancing Exploration and Exploitation in the Memetic Algorithm via a Switching Mechanism for the Large-Scale VRPTW

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

Abstract

This paper presents an effective memetic algorithm for the large-scale vehicle routing problem with time windows (VRPTW). Memetic algorithms consist of an evolutionary algorithm for the global exploration and a local search algorithm for the exploitation. In this paper, a switching mechanism is introduced to balance quantitatively between exploration and exploitation, to improve the convergent performance. Specifically, a similarity measure and a sigmoid function is defined to guide the crossover. Experimental results on Gehring and Homberger’s benchmark show that this algorithm outperforms previous approaches and improves 34 best-known solutions out of 180 large-scale instances. Although this paper focuses on the VRPTW, the proposed switching mechanism can be applied to accelerate more general genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sintef website: https://www.sintef.no/projectweb/top/vrptw/.

References

  1. Bettinelli, A., Ceselli, A., Righini, G.: A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows. Transp. Res. Part C Emerg. Technol. 19(5), 723–740 (2011)

    Article  Google Scholar 

  2. Blocho, M., Czech, Z.J.: A parallel memetic algorithm for the vehicle routing problem with time windows. In: Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 144–151. IEEE (2013)

    Google Scholar 

  3. Chabrier, A.: Vehicle routing problem with elementary shortest path based column generation. Comput. Oper. Res. 33(10), 2972–2990 (2006)

    Article  MathSciNet  Google Scholar 

  4. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001). https://doi.org/10.1057/palgrave.jors.2601163

    Article  MATH  Google Scholar 

  5. Garcia-Najera, A., Bullinaria, J.A.: Bi-objective optimization for the vehicle routing problem with time windows: using route similarity to enhance performance. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 275–289. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01020-0_24

    Chapter  Google Scholar 

  6. Gehring, H., Homberger, J.: A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows. In: Proceedings of EUROGEN99, vol. 2, pp. 57–64. Citeseer (1999)

    Google Scholar 

  7. Gong, Y.J., Zhang, J., Liu, O., Huang, R.Z., Chung, H.S.H., Shi, Y.H.: Optimizing the vehicle routing problem with time windows: a discrete particle swarm optimization approach. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(2), 254–267 (2012)

    Article  Google Scholar 

  8. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270 (1908)

    Google Scholar 

  9. Nagata, Y.: Edge assembly crossover for the capacitated vehicle routing problem. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 142–153. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71615-0_13

    Chapter  Google Scholar 

  10. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 37(4), 724–737 (2010)

    Article  Google Scholar 

  11. Nalepa, J., Blocho, M.: Co-operation in the parallel memetic algorithm. Int. J. Parallel Prog. 43(5), 812–839 (2015). https://doi.org/10.1007/s10766-014-0343-4

    Article  Google Scholar 

  12. Nalepa, J., Blocho, M.: Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput. 20(6), 2309–2327 (2015). https://doi.org/10.1007/s00500-015-1642-4

    Article  Google Scholar 

  13. Shunmugapriya, P., Kanmani, S., Fredieric, P.J., Vignesh, U., Justin, J.R., Vivek, K.: Effects of introducing similarity measures into artificial bee colony approach for optimization of vehicle routing problem. Int. J. Comput. Inf. Eng. 10(3), 651–658 (2016)

    Google Scholar 

  14. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)

    Article  MathSciNet  Google Scholar 

  15. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1), 475–489 (2013)

    Article  MathSciNet  Google Scholar 

  16. Yu, B., Yang, Z.Z., Yao, B.: An improved ant colony optimization for vehicle routing problem. Eur. J. Oper. Res. 196(1), 171–176 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhang, D., Wang, L., He, Z., Hu, H. (2020). Balancing Exploration and Exploitation in the Memetic Algorithm via a Switching Mechanism for the Large-Scale VRPTW. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_23

Download citation

Publish with us

Policies and ethics