Skip to main content

Vector-Level and Bit-Level Feature Adjusted Factorization Machine for Sparse Prediction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

  • 2731 Accesses

Abstract

Factorization Machines (FMs) are a series of effective solutions for sparse data prediction by considering the interactions among users, items, and auxiliary information. However, the feature representations in most state-of-the-art FMs are fixed, which reduces the prediction performance as the same feature may have unequal predictabilities under different input instances. In this paper, we propose a novel Feature-adjusted Factorization Machine (FaFM) model by adaptively adjusting the feature vector representations from both vector-level and bit-level. Specifically, we adopt a fully connected layer to adaptively learn the weight of vector-level feature adjustment. And a user-item specific gate is designed to refine the vector in bit-level and to filter noises caused by over-adaptation of the input instance. Extensive experiments on two real-world datasets demonstrate the effectiveness of FaFM. Empirical results indicate that FaFM significantly outperforms the traditional FM with a 10.89% relative improvement in terms of Root Mean Square Error (RMSE) and consistently exceeds four state-of-the-art deep learning based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://baltrunas.info/research-menu/frappe.

  2. 2.

    https://grouplens.org/datasets/movielens/latest/.

References

  1. Baltrunas, L., Church, K., Karatzoglou, A., Oliver, N.: Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. CoRR abs/1505.03014 (2015)

    Google Scholar 

  2. Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization machines. In: NIPS, pp. 3351–3359 (2016)

    Google Scholar 

  3. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS, pp. 315–323 (2011)

    Google Scholar 

  4. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: IJCAI, pp. 1725–1731 (2017)

    Google Scholar 

  5. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)

    Google Scholar 

  6. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: SIGIR, pp. 355–364. ACM (2017)

    Google Scholar 

  7. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW, International World Wide Web Conferences Steering Committee, pp. 173–182 (2017)

    Google Scholar 

  8. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580 (2012)

    Google Scholar 

  9. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C.J.: Field-aware factorization machines for CTR prediction. In: RecSys, pp. 43–50. ACM (2016)

    Google Scholar 

  10. Ma, C., Kang, P., Liu, X.: Hierarchical gating networks for sequential recommendation. In: KDD, pp. 825–833 (2019)

    Google Scholar 

  11. McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: KDD, pp. 1222–1230. ACM (2013)

    Google Scholar 

  12. Qian, Y., et al.: Interaction graph neural network for news recommendation. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds.) WISE 2020. LNCS, vol. 11881, pp. 599–614. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34223-4_38

    Chapter  Google Scholar 

  13. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000. IEEE (2010)

    Google Scholar 

  14. Rendle, S.: Factorization machines with libFM. TIST 3(3), 57 (2012)

    Article  Google Scholar 

  15. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with factorization machines. In: SIGIR, pp. 635–644 (2011)

    Google Scholar 

  16. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: WWW, pp. 521–530. ACM (2007)

    Google Scholar 

  17. Shan, Y., Hoens, T.R., Jiao, J., Wang, H., Yu, D., Mao, J.: Deep crossing: web-scale modeling without manually crafted combinatorial features. In: KDD, pp. 255–262. ACM (2016)

    Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Wang, X., He, X., Nie, L., Chua, T.S.: Item silk road: recommending items from information domains to social users. In: SIGIR, pp. 185–194. ACM (2017)

    Google Scholar 

  20. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.S.: Attentional factorization machines: learning the weight of feature interactions via attention networks. In: IJCAI, pp. 3119–3125 (2017)

    Google Scholar 

  21. Yu, Y., Wang, Z., Yuan, B.: An input-aware factorization machine for sparse prediction. In: IJCAI, pp. 1466–1472. AAAI Press (2019)

    Google Scholar 

  22. Zhang, T., et al.: Feature-level deeper self-attention network for sequential recommendation. In: IJCAI, pp. 4320–4326 (2019)

    Google Scholar 

  23. Zhao, P., et al.: Where to go next: a spatio-temporal gated network for next POI recommendation. AAAI 33, 5877–5884 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by NSFC (No. 6187 6117, 61876217, 61872258, 61728205), Suzhou Science and Technology Development Program(SYG201803), Open Program of Key Lab of IIP of CAS (No. IIP2019-1) and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengpeng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Zhao, P., Liu, Y., Sheng, V.S., Fang, J., Zhuang, F. (2020). Vector-Level and Bit-Level Feature Adjusted Factorization Machine for Sparse Prediction. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_27

Download citation

Publish with us

Policies and ethics