Skip to main content

AMTICS: Aligning Micro-clusters to Identify Cluster Structures

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

  • 2862 Accesses

Abstract

OPTICS is a popular tool to analyze the clustering structure of a dataset visually. The created two-dimensional plots indicate very dense areas and cluster candidates in the data as troughs. Each horizontal slice represents an outcome of a density-based clustering specified by the height as the density threshold for clusters. However, in very dynamic and rapid changing applications a complex and finely detailed visualization slows down the knowledge discovery. Instead, a framework that provides fast but coarse insights is required to point out structures in the data quickly. The user can then control the direction he wants to put emphasize on for refinement. We develop AMTICS as a novel and efficient divide-and-conquer approach to pre-cluster data in distributed instances and align the results in a hierarchy afterward. An interactive online phase ensures a low complexity while giving the user full control over the partial cluster instances. The offline phase reveals the current data clustering structure with low complexity and at any time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. In: ACM SIGMOD Record, vol. 28, no. 2, pp. 49–60. ACM (1999)

    Google Scholar 

  2. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM International Conference on Data Mining, pp. 328–339. SIAM (2006)

    Google Scholar 

  3. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp. 226–231 (1996)

    Google Scholar 

  4. Hinneburg, A., Keim, D.A., et al.: An efficient approach to clustering in large multimedia databases with noise. In: KDD, vol. 98, pp. 58–65 (1998)

    Google Scholar 

  5. McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017)

    Article  Google Scholar 

  6. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)

    Article  Google Scholar 

  7. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min. Knowl. Disc. 2(2), 169–194 (1998)

    Article  Google Scholar 

  8. Tasoulis, D.K., Ross, G., Adams, N.M.: Visualising the cluster structure of data streams. In: R. Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 81–92. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74825-0_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Richter, F., Lu, Y., Kazempour, D., Seidl, T. (2020). AMTICS: Aligning Micro-clusters to Identify Cluster Structures. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_52

Download citation

Publish with us

Policies and ethics