Skip to main content

Improving Gaussian Embedding for Extracting Local Semantic Connectivity in Networks

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2020 International Workshops (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12115))

Included in the following conference series:

  • 645 Accesses

Abstract

Gaussian embedding in unsupervised graph representation learning aims to embed vertices into Gaussian distributions. Downstream tasks such as link prediction and node classification can be efficiently computed on Gaussian distributions. Existing Gaussian embedding methods depending on adjacent neighbors of vertexes leave out of consideration of indirect connectivity information carried by remote vertice, which is still a part of local semantic connectivity in a network. In this paper, we propose an unsupervised graph representation model GLP2Gauss to improve Gaussian embedding by coarsening graph as indirect local connectivity. First, we decompose the original graph into paths and subgraphs. Secondly, we present a path-based embedding strategy combined with the Gaussian embedding method to maintain better local relevance of embedded nodes. Experiments evaluated on benchmark datasets show that GLP2Gauss has competitive performance on node classification and link prediction for networks compared with off-the-shelf network representation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mikolov, T., Chen, K., Corrado, G., Dean, G.: Efficient estimation of word representations in vector space. In: Proceedings of ICLR (2013)

    Google Scholar 

  2. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of KDD, pp. 701–710 (2014)

    Google Scholar 

  3. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of KDD, pp. 855–864 (2016)

    Google Scholar 

  4. Pan, S., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: Proceedings of IJCAI, pp. 1895–1901 (2016)

    Google Scholar 

  5. Bojchevski, A., Günnemann, S.: Deep Gaussian embedding of attributed graphs: Unsupervised inductive, CoRR, abs/1707.03815 (2017)

    Google Scholar 

  6. Zhu, D., Cui, P., Wang, D., Zhu, W.: Deep variational network embedding in Wasserstein space. In: Proceedings of KDD, pp. 2827–2836 (2018)

    Google Scholar 

  7. Hamilton, W., Ying, R., Leskovec, J.: Representation learning on graphs: Methods and applications, CoRR, abs/1709.05584 (2017)

    Google Scholar 

  8. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning with rich text information. In: Proceedings of IJCAI, pp. 2111–2117 (2015)

    Google Scholar 

  9. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predict. Struct. Data, 1 (2006)

    Google Scholar 

  10. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Proceedings of NIPS, pp. 321–328 (2003)

    Google Scholar 

  11. Cai, H., Zheng, V.M., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  12. Vilnis, L., McCallum, A.: Word representations via Gaussian embedding. In: Proceedings of ICLR (2014)

    Google Scholar 

  13. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with Gaussian embedding. In: Proceedings of CIKM, pp. 623–632 (2015)

    Google Scholar 

  14. Givens, C.R., Shortt, M.: A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31(2), 231–240 (1984)

    Article  MathSciNet  Google Scholar 

  15. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of WWW, pp. 1067–1077 (2015)

    Google Scholar 

  16. Gunn, S.R.: Support vector machines for classification, and regression. ISIS Tech. Rep. 14(1), 5–16 (1998)

    Google Scholar 

  17. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of KDD, pp. 1225–1234 (2016)

    Google Scholar 

  18. Dai, H., et al.: Adversarial attack on graph structured data. In: Proceedings of ICML, pp. 1123–1132 (2018)

    Google Scholar 

  19. Dong, Y., Chawla, N., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of KDD, pp. 135–144 (2018)

    Google Scholar 

  20. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of KDD, pp. 974–983 (2018)

    Google Scholar 

  21. Veliakovia, P., Fedus, W., Hamilton, W.L., Lio, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. CoRR, abs/1809.10341 (2018)

    Google Scholar 

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. CoRR, abs/1609.02907 (2016)

    Google Scholar 

  23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. CoRR, abs/1710.10903 (2017)

    Google Scholar 

  24. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Proceedings of NIPS, pp. 1857–1865 (2016)

    Google Scholar 

Download references

Acknowlegements

This work is supported by the National Key Research and Development Program of China (2017YFC0908401) and the National Natural Science Foundation of China (61972455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, C., Wu, P., Zhang, X. (2020). Improving Gaussian Embedding for Extracting Local Semantic Connectivity in Networks. In: Nah, Y., Kim, C., Kim, SY., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020 International Workshops. DASFAA 2020. Lecture Notes in Computer Science(), vol 12115. Springer, Cham. https://doi.org/10.1007/978-3-030-59413-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59413-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59412-1

  • Online ISBN: 978-3-030-59413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics