Skip to main content

SOLAR: Fusing Node Embeddings and Attributes into an Arbitrary Space

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12114))

Included in the following conference series:

  • 2058 Accesses

Abstract

Network embedding has attracted lots of attention in recent years. It learns low-dimensional representations for network nodes, which benefits many downstream tasks such as node classification and link prediction. However, most of the existing approaches are designed for a single network scenario. In the era of big data, the related information from different networks should be fused together to facilitate applications. In this paper, we study the problem of fusing the node embeddings and incomplete node attributes provided by different networks into an arbitrary space. Specifically, we first propose a simple but effective inductive method by learning the relationships among node embeddings and the given attributes. Then, we propose its transductive variant by jointly considering the node embeddings and incomplete attributes. Finally, we introduce its deep transductive variant based on deep AutoEncoder. Experimental results on four datasets demonstrate the superiority of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E., et al.: Structure-revealing data fusion. BMC Bioinform. 15(1), 239 (2014)

    Article  Google Scholar 

  2. Alter, O., Brown, P.O., Botstein, D.: Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. PNAS 100(6), 3351–3356 (2003)

    Article  Google Scholar 

  3. Bezdek, J.C., Hathaway, R.J.: Some notes on alternating optimization. In: Pal, N.R., Sugeno, M. (eds.) AFSS 2002. LNCS (LNAI), vol. 2275, pp. 288–300. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45631-7_39

    Chapter  Google Scholar 

  4. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2009)

    Article  Google Scholar 

  5. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: CIKM, pp. 891–900. ACM (2015)

    Google Scholar 

  6. Cheng, X., Li, H., Liu, J.: Video sharing propagation in social networks: measurement, modeling, and analysis. In: INFOCOM, pp. 45–49. IEEE (2013)

    Google Scholar 

  7. Clark, J.J., Yuille, A.L.: Data Fusion for Sensory Information Processing Systems, vol. 105. Springer, New York (2013)

    Google Scholar 

  8. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. TKDE 31, 833–852 (2018)

    Google Scholar 

  9. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: SIGKDD, pp. 109–117. ACM (2004)

    Google Scholar 

  10. Fan, J., Chow, T.: Deep learning based matrix completion. Neurocomputing 266, 540–549 (2017)

    Article  Google Scholar 

  11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  12. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. In: Bauer, F.L., Householder, A.S., Olver, F.W.J., Rutishauser, H., Samelson, K., Stiefel, E. (eds.) Handbook for Automatic Computation. Die Grundlehren der mathematischen Wissenschaften, vol. 186, pp. 134–151. Springer, Heidelberg (1971). https://doi.org/10.1007/978-3-642-86940-2_10

    Chapter  Google Scholar 

  13. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864. ACM (2016)

    Google Scholar 

  14. Hsu, D.F., Taksa, I.: Comparing rank and score combination methods for data fusion in information retrieval. Inf. Retr. 8(3), 449–480 (2005)

    Article  Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  17. Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605 (2008)

    Google Scholar 

  18. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retr. 3(2), 127–163 (2000)

    Article  Google Scholar 

  19. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Springer, Berlin (2013)

    MATH  Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD, pp. 701–710. ACM (2014)

    Google Scholar 

  22. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  24. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)

    Article  Google Scholar 

  25. Shakimov, A., et al.: Vis-a-Vis: privacy-preserving online social networking via virtual individual servers. In: COMSNETS, pp. 1–10. IEEE (2011)

    Google Scholar 

  26. Silva, V.D., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: NIPS, pp. 721–728 (2003)

    Google Scholar 

  27. Smith, A., Anderson, M.: Social media use in 2018. Website (2018). https://www.pewresearch.org/internet/2018/03/01/social-media-use-in-2018/

  28. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: Large-scale information network embedding. In: WWW, pp. 1067–1077. ACM (2015)

    Google Scholar 

  29. Tu, C., Liu, H., Liu, Z., Sun, M.: CANE: context-aware network embedding for relation modeling. In: ACL, vol. 1, pp. 1722–1731 (2017)

    Google Scholar 

  30. Wang, H., et al.: GraphGAN: graph representation learning with generative adversarial nets. In: AAAI, pp. 2508–2515 (2018)

    Google Scholar 

  31. Wang, Q., Wang, Z., Ye, X.: Equivalence between line and matrix factorization. arXiv preprint arXiv:1707.05926 (2017)

  32. Wang, Z., Wang, C., Pei, J., Ye, X., Philip, S.Y.: Causality based propagation history ranking in social networks. In: IJCAI, pp. 3917–3923 (2016)

    Google Scholar 

  33. Wang, Z., Ye, X., Wang, C., Cui, J., Yu, P.S.: Network embedding with completely-imbalanced labels. TKDE (2020)

    Google Scholar 

  34. Wang, Z., Ye, X., Wang, C., Wu, Y., Wang, C., Liang, K.: RSDNE: exploring relaxed similarity and dissimilarity from completely-imbalanced labels for network embedding. In: AAAI, pp. 475–482 (2018)

    Google Scholar 

  35. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: IJCAI, pp. 2111–2117 (2015)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by National Natural Science Foundation of China (No. 61902020), Macao Youth Scholars Program (No. AM201912), China Postdoctoral Science Foundation Funded Project (No. 2018M640066), Fundamental Research Funds for the Central Universities (No. FRF-TP-18-016A1), and National Key R&D Program of China (No. 2019QY1402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Cui, J., Chen, Y., Hu, C. (2020). SOLAR: Fusing Node Embeddings and Attributes into an Arbitrary Space. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59419-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59418-3

  • Online ISBN: 978-3-030-59419-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics