Skip to main content

DEAMER: A Deep Exposure-Aware Multimodal Content-Based Recommendation System

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12114))

Included in the following conference series:

Abstract

Modern content-based recommendation systems have greatly benefited from deep neural networks, which can effectively learn feature representations from item descriptions and user profiles. However, the supervision signals to guide the representation learning are generally incomplete (i.e., the majority of ratings are missing) and/or implicit (i.e., only historical interactions showing implicit preferences are available). The learned representations will be biased in this case; and consequently, the recommendations are over-specified. To alleviate this problem, we present a Deep Exposure-Aware Multimodal contEnt-based Recommender (i.e., DEAMER) in this paper. DEAMER can jointly exploit rating and interaction signals via multi-task learning. DEAMER mimics the expose-evaluate process in recommender systems where an item is evaluated only if it is exposed to the user. DEAMER generates the exposure status by matching multi-modal user and item content features. Then the rating value is predicted based on the exposure status. To verify the effectiveness of DEAMER, we conduct comprehensive experiments on a variety of e-commerce data sets. We show that DEAMER outperforms state-of-the-art shallow and deep recommendation models on recommendation tasks such as rating prediction and top-k recommendation. Furthermore, DEAMER can be adapted to extract insightful patterns of both users and items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://jmcauley.ucsd.edu/data/amazon/.

References

  1. Aggarwal, C.C.: Recommender Systems - The Textbook. Springer (2016)

    Google Scholar 

  2. Ding, D., Li, H., Huang, Z., Mamoulis, N.: Efficient fault-tolerant group recommendation using alpha-beta-core. In: CIKM. pp. 2047–2050 (2017)

    Google Scholar 

  3. Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., Zhang, F.: A hybrid collaborative filtering model with deep structure for recommender systems. In: AAAI. pp. 1309–1315 (2017)

    Google Scholar 

  4. Ebesu, T., Shen, B., Fang, Y.: Collaborative memory network for recommendation systems. In: SIGIR. pp. 515–524 (2018)

    Google Scholar 

  5. García-Durán, A., Gonzalez, R., Oñoro-Rubio, D., Niepert, M., Li, H.: Transrev: Modeling reviews as translations from users to items. arXiv Preprint (2018), https://arxiv.org/abs/1801.10095

  6. Gatzioura, A., Vinagre, J., Jorge, A.M., Sànchez-Marrè, M.: A hybrid recommender system for improving automatic playlist continuation. In: IEEE Transactions on Knowledge and Data Engineering (2019). https://doi.org/10.1109/TKDE.2019.2952099

  7. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: A factorization-machine based neural network for CTR prediction. In: IJCAI. pp. 1725–1731 (2017)

    Google Scholar 

  8. He, X., Du, X., Wang, X., Tian, F., Tang, J., Chua, T.: Outer product-based neural collaborative filtering. In: IJCAI. pp. 2227–2233 (2018)

    Google Scholar 

  9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: WWW. pp. 173–182 (2017)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n recommender systems. In: KDD. pp. 659–667 (2013)

    Google Scholar 

  12. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD. pp. 426–434 (2008)

    Google Scholar 

  13. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  14. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation. In: Rep4NLP@ACL. pp. 78–86 (2016)

    Google Scholar 

  15. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision. vol. 1681, p. 319 (1999)

    Google Scholar 

  16. Li, H., Chan, T.N., Yiu, M.L., Mamoulis, N.: FEXIPRO: fast and exact inner product retrieval in recommender systems. In: SIGMOD Conference. pp. 835–850 (2017)

    Google Scholar 

  17. Li, H., Liu, Y., Mamoulis, N., Rosenblum, D.S.: Translation-based sequential recommendation for complex users on sparse data. IEEE Trans. Knowl, Data Eng (2019)

    Book  Google Scholar 

  18. Li, H., Liu, Y., Qian, Y., Mamoulis, N., Tu, W., Cheung, D.W.: HHMF: hidden hierarchical matrix factorization for recommender systems. Data Min. Knowl. Discov. 33(6), 1548–1582 (2019)

    Article  MathSciNet  Google Scholar 

  19. Li, H., Wu, D., Mamoulis, N.: A revisit to social network-based recommender systems. In: SIGIR. pp. 1239–1242 (2014)

    Google Scholar 

  20. Li, H., Wu, D., Tang, W., Mamoulis, N.: Overlapping community regularization for rating prediction in social recommender systems. In: RecSys. pp. 27–34 (2015)

    Google Scholar 

  21. Lian, J., Zhang, F., Xie, X., Sun, G.: Cccfnet: A content-boosted collaborative filtering neural network for cross domain recommender systems. In: WWW. pp. 817–818 (2017)

    Google Scholar 

  22. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In: KDD. pp. 1754–1763 (2018)

    Google Scholar 

  23. Liang, D., Charlin, L., McInerney, J., Blei, D.M.: Modeling user exposure in recommendation. In: WWW. pp. 951–961 (2016)

    Google Scholar 

  24. Lu, Z., Li, H., Mamoulis, N., Cheung, D.W.: HBGG: a hierarchical bayesian geographical model for group recommendation. In: SDM. pp. 372–380 (2017)

    Google Scholar 

  25. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. JMLR 9, 2579–2625 (2008)

    Google Scholar 

  26. Marlin, B.M., Zemel, R.S.: Collaborative prediction and ranking with non-random missing data. In: RecSys. pp. 5–12 (2009)

    Google Scholar 

  27. Qian, Y., Li, H., Mamoulis, N., Liu, Y., Cheung, D.W.: Reverse k-ranks queries on large graphs. In: EDBT. pp. 37–48 (2017)

    Google Scholar 

  28. Rendle, S.: Factorization machines with libfm. ACM TIST 3(3), 57:1–57:22 (2012)

    Google Scholar 

  29. Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer (2015)

    Google Scholar 

  30. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS. pp. 1257–1264 (2007)

    Google Scholar 

  31. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: Autoencoders meet collaborative filtering. In: WWW. pp. 111–112 (2015)

    Google Scholar 

  32. Strub, F., Gaudel, R., Mary, J.: Hybrid recommender system based on autoencoders. In: DLRS@RecSys. pp. 11–16 (2016)

    Google Scholar 

  33. Wang, C., Niepert, M., Li, H.: LRMM: learning to recommend with missing modalities. In: EMNLP. pp. 3360–3370 (2018)

    Google Scholar 

  34. Xue, H., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models for recommender systems. In: IJCAI. pp. 3203–3209 (2017)

    Google Scholar 

  35. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv. 52(1), 5:1–5:38 (2019)

    Google Scholar 

  36. Zhang, Y., Ai, Q., Chen, X., Croft, W.B.: Joint representation learning for top-n recommendation with heterogeneous information sources. In: CIKM. pp. 1449–1458 (2017)

    Google Scholar 

  37. Zheng, L., Noroozi, V., Yu, P.S.: Joint deep modeling of users and items using reviews for recommendation. In: WSDM. pp. 425–434 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (no. 61702432, 61772209, 61972328), the Fundamental Research Funds for Central Universities of China (20720180070) and the international Cooperation Projects of Fujian in China (201810016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, Y., Li, H., Wang, X., Lin, C. (2020). DEAMER: A Deep Exposure-Aware Multimodal Content-Based Recommendation System. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59419-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59418-3

  • Online ISBN: 978-3-030-59419-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics