Skip to main content

Semantic Enhanced Top-k Similarity Search on Heterogeneous Information Networks

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12114))

Included in the following conference series:

Abstract

Similarity search on heterogeneous information networks has attracted widely attention from both industrial and academic areas in recent years, for example, used as friend detection in social networks and collaborator recommendation in coauthor networks. The structure information on the heterogeneous information network can be captured by multiple meta paths and people usually utilized meta paths to design method for similarity search. The rich semantics in the heterogeneous information networks is not only its structure information, the content stored in nodes is also an important element. However, the content similarity of nodes was usually not valued in the existing methods. Although recently some researchers consider both of information in machine learning-based methods for similarity search, they used structure and content information separately. To address this issue by balancing the influence of structure and content information flexibly in the process of searching, we propose a double channel convolutional neural networks model for top-k similarity search, which uses path instances as model inputs, and generates structure and content embeddings for nodes based on different meta paths. Moreover, we utilize two attention mechanisms to enhance the differences of meta path for each node and combine the content and structure information of nodes for comprehensive representation. The experimental results showed our search algorithm can effectively support top-k similarity search in heterogeneous information networks and achieved higher performance than existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, A.: Reviewing academic social network mining applications. In: 2015 International Conference on Information and Communication Technology Convergence (ICTC), pp. 503–508 (2015)

    Google Scholar 

  2. Keong, B.V., Anthony, P.: PageRank: a modified random surfer model. In: 2011 7th International Conference on IT in Asia (CITA 2011), p. 6 (2011)

    Google Scholar 

  3. Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P.A., Maureira, J.-C.: Deep-HiTS: rotation invariant convolutional neural network for transient detection. Astrophys. J. 836(1), 97 (7 pp.) (2017)

    Google Scholar 

  4. Zhu, R., Zou, Z., Li, J.: SimRank computation on uncertain graphs, pp. 565–576 (2016)

    Google Scholar 

  5. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: KDD 2014, New York, NY, USA, 24–27 August 2014

    Google Scholar 

  6. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. arXiv, p. 10, 3 July 2016

    Google Scholar 

  7. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI International Joint Conference on Artificial Intelligence, January 2016, pp. 1895–1901 (2016)

    Google Scholar 

  8. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  9. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2019)

    Article  Google Scholar 

  10. Ma, X., Wang, R.: Personalized scientific paper recommendation based on heterogeneous graph representation. IEEE Access 7, 79887–79894 (2019). https://doi.org/10.1109/ACCESS.2019.2923293

    Article  Google Scholar 

  11. Xie, F., Chen, L., Lin, D., Zheng, Z., Lin, X.: Personalized service recommendation with mashup group preference in heterogeneous information network. IEEE Access 7, 16155–16167 (2019)

    Article  Google Scholar 

  12. Shi, C., Zhang, Z., Ji, Y., Wang, W., Philip, S.Y., Shi, Z.: SemRec: a personalized semantic recommendation method based on weighted heterogeneous information networks. World Wide Web 22(1), 153–184 (2019)

    Article  Google Scholar 

  13. Xie, F., Chen, L., Ye, Y., Zheng, Z., Lin, X.: Factorization machine based service recommendation on heterogeneous information networks. In: Proceedings of the 2018 IEEE International Conference on Web Services (ICWS), pp 115–122 (2018)

    Google Scholar 

  14. Jiang, Z., Liu, H., Fu, B., Wu, Z., Zhang, T.: Recommendation in heterogeneous information networks based on generalized random walk model and Bayesian Personalized Ranking. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining, WSDM 2018, February 2018, pp. 288–296, 2 February 2018

    Google Scholar 

  15. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A Survey of Heterogeneous Information Network Analysis. arXiv:1511.04854 [cs.SI]

  16. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, 13 August 2017, Part F129685, pp. 135–144 (2017)

    Google Scholar 

  17. Fu, T.-Y., Lee, W.-C., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the International Conference on Information and Knowledge Management, CIKM 2017, 6 November 2017, Part F131841, p 1797–1806 (2017)

    Google Scholar 

  18. Wang, X., et al.: Heterogeneous graph attention network. In: The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019, pp. 2022–2032, 13 May 2019

    Google Scholar 

  19. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11), 992–1003 (2011)

    Article  Google Scholar 

  20. Shi, C., Kong, X., Huang, Y., Yu, P.S., Wu, V.: HeteSim: a general framework for relevance measure in heterogeneous networks. IEEE TKDE 26(10), 2479–2492 (2014)

    Google Scholar 

  21. Pham, P., Do, P., Ta, C.D.C.: W-PathSim: novel approach of weighted similarity measure in content-based heterogeneous information networks by applying LDA topic modeling. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 539–549. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75417-8_51

    Chapter  Google Scholar 

  22. Jin, R., Lee, V.E., Hong, H.: Axiomatic ranking of network role similarity. In: SIGKDD, pp. 922–930 (2011)

    Google Scholar 

  23. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning, Beijing, China, vol. 32. JMLR: W&CP (2014)

    Google Scholar 

  24. Hu, B., Shi, C.: Leveraging meta-path based context for top-n recommendation with a neural co-attention model. In: KDD 2018, 19–23 August 2018

    Google Scholar 

  25. Zhang, C., Song, D., Huang, C.: Heterogeneous graph neural network. In: KDD 2019, p. 11 (2019)

    Google Scholar 

  26. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural networks. In: SIGIR 2015, Santiago, Chile, 09–13 August 2015

    Google Scholar 

  27. Wang, Z., Zheng, W., Song, C.: Air Quality Measurement Based on Double-Channel Convolutional Neural Network Ensemble Learning. arXiv:1902.06942v2 [cs.CV], 19 February 2019

  28. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD 2008), pp. 990–998 (2008)

    Google Scholar 

  29. Tang, J., Fong, A.C., Wang, B., Zhang, J.: A unified probabilistic framework for name disambiguation in digital library. IEEE Trans. Knowl. Data Eng. (TKDE) 24(6), 975–987 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61902055, U1811261), China Postdoctoral Science Foundation (2019M651134), Guangdong Province Key Laboratory of Popular High Performance Computers (2017B030314073), and Fundamental Research Funds for the Central Universities (N181703006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, M., Zhang, Y., Zhang, T., Yu, G. (2020). Semantic Enhanced Top-k Similarity Search on Heterogeneous Information Networks. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12114. Springer, Cham. https://doi.org/10.1007/978-3-030-59419-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59419-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59418-3

  • Online ISBN: 978-3-030-59419-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics