Skip to main content

Saliency Detection in Hyperspectral Images Using Autoencoder-Based Data Reconstruction

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2020)

Abstract

Saliency detection extracts objects attractive to a human vision system from an image. Although saliency detection methodologies were originally investigated on RGB color images, recent developments in imaging technologies have aroused the interest in saliency detection methodologies for data captured with high spectral resolution using multispectral and hyperspectral imaging (MSI/HSI) sensors. In this paper, we propose a saliency detection methodology that elaborates HSI data reconstructed through an autoencoder architecture. It resorts to (spectral-spatial) distance measures to quantify the salience degree in the data represented through the autoencoder. Finally, it performs a clustering stage in order to separate the salient information from the background. The effectiveness of the proposed methodology is evaluated with benchmark HSI and MSI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The main difference between multispectral and hyperspectral is the number of bands and how narrow the bands are. MSI technology commonly refers to a small amount of bands, i.e., from 3 to 10, sensed by a radiometer. HSI technology could have hundreds or thousands bands from a spectrometer. In this paper, we generally refer to HSI data defining a methodology that is then evaluated in both HSI and MSI scenario.

  2. 2.

    The dataset is available at https://github.com/gistairc/HS-SOD.

References

  1. Appice, A., Di Mauro, N., Lomuscio, F., Malerba, D.: Empowering change vector analysis with autoencoding in bi-temporal hyperspectral images. In: CEUR Workshop Proceedings, vol. 2466(2019)

    Google Scholar 

  2. Appice, A., Malerba, D.: Segmentation-aided classification of hyperspectral data using spatial dependency of spectral bands. ISPRS J. Photogrammetry Remote Sens. 147, 215–231 (2019)

    Article  Google Scholar 

  3. Borji, A., Cheng, M.-M., Hou, Q., Jiang, H., Li, J.: Salient object detection: a survey. Comput. Vis. Media 5(2), 117–150 (2019). https://doi.org/10.1007/s41095-019-0149-9

    Article  Google Scholar 

  4. Borji, A., Tavakoli, H.R., Sihite, D.N., Itti, L.: Analysis of scores, datasets, and models in visual saliency prediction. In: 2013 IEEE International Conference on Computer Vision, pp. 921–928 (2013)

    Google Scholar 

  5. Charte, D., Charte, F., García, S., del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fusion 44, 78–96 (2018)

    Article  Google Scholar 

  6. Han, W., Wang, G., Tu, K.: Latent variable autoencoder. IEEE Access 7, 48514–48523 (2019)

    Article  Google Scholar 

  7. Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D.: Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J. Photogrammetry Remote Sens. 80, 91–106 (2013)

    Article  Google Scholar 

  8. Imamoglu, N., Ding, G., Fang, Y., Kanezaki, A., Kouyama, T., Nakamura, R.: Salient object detection on hyperspectral images using features learned from unsupervised segmentation task. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019), pp. 2192–2196. IEEE (2019)

    Google Scholar 

  9. Imamoglu, N.: Hyperspectral image dataset for benchmarking on salient object detection. In: 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3 (2018)

    Google Scholar 

  10. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  11. Jia, Y., Hao, C., Wang, K.: A new saliency object extraction algorithm based on Itti’s model and region growing. In: 2019 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 224–228 (2019)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR 2015), Conference Track Proceedings (2014). arXiv:1412.6980

  13. Liang, J., Zhou, J., Bai, X., Qian, Y.: Salient object detection in hyperspectral imagery. In: 2013 IEEE International Conference on Image Processing, pp. 2393–2397 (2013)

    Google Scholar 

  14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Geosci. Remote Sens. 9(1), 62–66 (1972)

    Google Scholar 

  15. Seydi, S.T., Hasanlou, M.: A new land-cover match-based change detection for hyperspectral imagery. Eur. J. Remote Sens. 50(1), 517–533 (2017)

    Article  Google Scholar 

  16. Wang, J., Liu, S., Zhang, S.: A novel saliency-based object segmentation method for seriously degenerated images. In: 2015 IEEE International Conference on Information and Automation, pp. 1172–1177 (2015)

    Google Scholar 

  17. Windrim, L., Ramakrishnan, R., Melkumyan, A., Murphy, R.J., Chlingaryan, A.: Unsupervised feature-learning for hyperspectral data with autoencoders. Remote Sens. 11(7), 1–19 (2019)

    Article  Google Scholar 

  18. Yang, Z., Mueller, R.: Spatial-spectral cross-correlation for change detection : a case study for citrus coverage change detection. In: ASPRS 2007 Annual Conference, vol. 2, pp. 767–777, January 2007

    Google Scholar 

  19. Zhang, L., Zhang, Y., Yan, H., Gao, Y., Wei, W.: Salient object detection in hyperspectral imagery using multi-scale spectral-spatial gradient. Neurocomputing 291, 215–225 (2018)

    Article  Google Scholar 

  20. Zhou, P., Han, J., Cheng, G., Zhang, B.: Learning compact and discriminative stacked autoencoder for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(7), 4823–4833 (2019)

    Article  Google Scholar 

  21. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Acknowledgments

This work fulfills the research objectives of the PON “Ricerca e Innovazione” 2014–2020 project RPASInAir “Integrazione dei Sistemi Aeromobili a Pilotaggio Remoto nello spazio aereo non segregato per servizi” (ARS01_00820), funded by the Italian Ministry for Universities and Research (MIUR). The research of Antonella Falini is founded by PON Project AIM 1852414 CUP H95G18000120006 ATT1. The research of Cristiano Tamborrino is funded by PON Project “Change Detection in Remote Sensing” CUP H94F18000270006. We thank Planetek Italia srl for Madrid data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Appice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Appice, A., Lomuscio, F., Falini, A., Tamborrino, C., Mazzia, F., Malerba, D. (2020). Saliency Detection in Hyperspectral Images Using Autoencoder-Based Data Reconstruction. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2020. Lecture Notes in Computer Science(), vol 12117. Springer, Cham. https://doi.org/10.1007/978-3-030-59491-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59491-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59490-9

  • Online ISBN: 978-3-030-59491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics