Skip to main content

Random Forests and Homogeneous Granulation

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1283))

Included in the following conference series:

Abstract

The work is a continuation of our research on the application of the newly discovered homogeneous granulation technique. The method gives the possibility to reduce the size of decision-making systems while maintaining their classification efficiency without the need to estimate the optimal approximation radii. The level of system approximation depends on the level of homogeneity of decision classes. That is, the tolerance of modification of objects with their preservation in a given class. Being motivated by effectiveness of our recently developed Ensemble model of Random Granular Reflections - where the homogeneous granulation technique was used to select objects for individual learning iterations - we have checked the effectiveness of the Random Forest in the context of boosting the classification on granular data. In the applied technique, an appropriate subset of attributes and objects is used in individual learning iterations. This means that training data is reduced in two ways. The results of experiments carried out on selected data from the UCI repository show reasonable efficiency on significantly reduced training systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995. pp. 278–282 (1995). Archived from the original (PDF) on 17 April 2016. Retrieved 5 June 2016

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  3. Ropiak, K., Artiemjew, P.: A study in granular computing: homogenous granulation. In: Damaševičius, R., Vasiljevienė, G. (eds.) ICIST 2018. CCIS, vol. 920, pp. 336–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99972-2_27

    Chapter  Google Scholar 

  4. Ropiak, K., Artiemjew, P.: On granular rough computing: epsilon homogenous granulation. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 546–558. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_43

    Chapter  Google Scholar 

  5. Ropiak, K., Artiemjew, P.: Homogenous granulation and its epsilon variant. Computers 8(2), 36 (2019)

    Article  Google Scholar 

  6. Artiemjew, P., Ropiak, K.: A novel ensemble model - the random granular reflections. In: Proceedings of the 27th International Workshop on Concurrency, Specification and Programming, CEUR, Berlin (2018)

    Google Scholar 

  7. Artiemjew, P., Ropiak, K.: Missing values absorption based on homogenous granulation. In: Damaševičius, R., Vasiljevienė, G. (eds.) ICIST 2019. CCIS, vol. 1078, pp. 441–450. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30275-7_34

    Chapter  Google Scholar 

  8. Polkowski, L.: A model of granular computing with applications. In: Proceedings of IEEE 2006 Conference on Granular Computing GrC06, Atlanta, USA, pp. 9–16. IEEE Press (2006)

    Google Scholar 

  9. Mani, A.: Comparative approaches to granularity in general rough sets. In: Bello, R., Miao, D., Falcon, R., Nakata, M., Rosete, A., Ciucci, D. (eds.) IJCRS 2020. LNCS (LNAI), vol. 12179, pp. 500–517. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52705-1_37

    Chapter  Google Scholar 

  10. Polkowski, L.: Formal granular calculi based on rough inclusions. In: Proceedings of IEEE 2005 Conference on Granular Computing GrC05, Beijing, China, pp. 57–62. IEEE Press (2005)

    Google Scholar 

  11. Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation. ISRL, vol. 77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12880-1

    Book  MATH  Google Scholar 

  12. Polkowski, L.: Granulation of knowledge in decision systems: the approach based on rough inclusions. The method and its applications. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 69–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73451-2_9

    Chapter  Google Scholar 

  13. Polkowski, L.: A unified approach to granulation of knowledge and granular computing based on rough mereology: a survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 375–400. Wiley, Chichester (2008)

    Chapter  Google Scholar 

  14. Polkowski, L.: Approximate Reasoning by Parts. An Introduction to Rough Mereology. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22279-5

    Book  Google Scholar 

  15. Kleinberg, E.M.: Stochastic discrimination. Ann. Math. Artif. Intell. 1, 207–239 (1990). https://doi.org/10.1007/BF01531079

    Article  MATH  Google Scholar 

  16. Irvine Machine Learning Repository, University of California. https://archive.ics.uci.edu/ml/index.php

Download references

Acknowledgements

The research has been supported by grant 23.610.007-000 from Ministry of Science and Higher Education of the Republic of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Ropiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ropiak, K., Artiemjew, P. (2020). Random Forests and Homogeneous Granulation. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds) Information and Software Technologies. ICIST 2020. Communications in Computer and Information Science, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-030-59506-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59506-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59505-0

  • Online ISBN: 978-3-030-59506-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics