Abstract
The work is a continuation of our research on the application of the newly discovered homogeneous granulation technique. The method gives the possibility to reduce the size of decision-making systems while maintaining their classification efficiency without the need to estimate the optimal approximation radii. The level of system approximation depends on the level of homogeneity of decision classes. That is, the tolerance of modification of objects with their preservation in a given class. Being motivated by effectiveness of our recently developed Ensemble model of Random Granular Reflections - where the homogeneous granulation technique was used to select objects for individual learning iterations - we have checked the effectiveness of the Random Forest in the context of boosting the classification on granular data. In the applied technique, an appropriate subset of attributes and objects is used in individual learning iterations. This means that training data is reduced in two ways. The results of experiments carried out on selected data from the UCI repository show reasonable efficiency on significantly reduced training systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995. pp. 278–282 (1995). Archived from the original (PDF) on 17 April 2016. Retrieved 5 June 2016
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Ropiak, K., Artiemjew, P.: A study in granular computing: homogenous granulation. In: Damaševičius, R., Vasiljevienė, G. (eds.) ICIST 2018. CCIS, vol. 920, pp. 336–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99972-2_27
Ropiak, K., Artiemjew, P.: On granular rough computing: epsilon homogenous granulation. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 546–558. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_43
Ropiak, K., Artiemjew, P.: Homogenous granulation and its epsilon variant. Computers 8(2), 36 (2019)
Artiemjew, P., Ropiak, K.: A novel ensemble model - the random granular reflections. In: Proceedings of the 27th International Workshop on Concurrency, Specification and Programming, CEUR, Berlin (2018)
Artiemjew, P., Ropiak, K.: Missing values absorption based on homogenous granulation. In: Damaševičius, R., Vasiljevienė, G. (eds.) ICIST 2019. CCIS, vol. 1078, pp. 441–450. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30275-7_34
Polkowski, L.: A model of granular computing with applications. In: Proceedings of IEEE 2006 Conference on Granular Computing GrC06, Atlanta, USA, pp. 9–16. IEEE Press (2006)
Mani, A.: Comparative approaches to granularity in general rough sets. In: Bello, R., Miao, D., Falcon, R., Nakata, M., Rosete, A., Ciucci, D. (eds.) IJCRS 2020. LNCS (LNAI), vol. 12179, pp. 500–517. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52705-1_37
Polkowski, L.: Formal granular calculi based on rough inclusions. In: Proceedings of IEEE 2005 Conference on Granular Computing GrC05, Beijing, China, pp. 57–62. IEEE Press (2005)
Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation. ISRL, vol. 77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12880-1
Polkowski, L.: Granulation of knowledge in decision systems: the approach based on rough inclusions. The method and its applications. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 69–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73451-2_9
Polkowski, L.: A unified approach to granulation of knowledge and granular computing based on rough mereology: a survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 375–400. Wiley, Chichester (2008)
Polkowski, L.: Approximate Reasoning by Parts. An Introduction to Rough Mereology. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22279-5
Kleinberg, E.M.: Stochastic discrimination. Ann. Math. Artif. Intell. 1, 207–239 (1990). https://doi.org/10.1007/BF01531079
Irvine Machine Learning Repository, University of California. https://archive.ics.uci.edu/ml/index.php
Acknowledgements
The research has been supported by grant 23.610.007-000 from Ministry of Science and Higher Education of the Republic of Poland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ropiak, K., Artiemjew, P. (2020). Random Forests and Homogeneous Granulation. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds) Information and Software Technologies. ICIST 2020. Communications in Computer and Information Science, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-030-59506-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-59506-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59505-0
Online ISBN: 978-3-030-59506-7
eBook Packages: Computer ScienceComputer Science (R0)