Skip to main content

Analytical Model of Design Workflows Organization in the Automated Design of Complex Technical Products

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1283))

Included in the following conference series:

Abstract

Authors have developed a new analytical model for organizing design workflows, including orchestration and choreography compositions of hybrid dynamic diagrammatic models of design workflows in computer-aided systems (CAD) and computer-aided systems of production preparation (CAPP). Their analysis, control, synthesis, transformation and interpretation in different graphic language bases, designed to increase the hybrid dynamic diagrammatic design workflows models interoperability degree in CAD and CAPP on the basis of the ensemble principle. The model differs from analogues in that it provides the system functions and communication protocol definition, which increases their interconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ohta, T., Tanjo, T., Ogasawara, O.: Accumulating computational resource usage of genomic data analysis workflow to optimize cloud computing instance selection. GigaScience 8(4), 1–11 (2019). https://doi.org/10.1093/gigascience/giz052

    Article  Google Scholar 

  2. Bhattasali, T., Chaki, N., Chaki, R., Saeed, K.: Context and trust aware workflow-oriented access framework. In: Proceedings of the International Conference on Software Engineering and Knowledge Engineering, SEKE-2016, http://ksiresearchorg.ipage.com/seke/seke16paper/seke16paper_179.pdf. Accessed 29 Feb 2020

  3. Bigvand, G., Fay, A.: A workflow support system for the process and automation engineering of production plants. In: 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 1118–1123 (2017). https://doi.org/10.1109/ICIT.2017.7915519

  4. Rak, K, Car, Ž., Lovrek, I.: Effort estimation model for software development projects based on use case reuse. J. Softw. Evol. Process, 31 (2019). https://doi.org/10.1002/smr.2119

  5. Weingartner, L., Sadlauer, A., Hehenberger, P., Boschert, S.: Workflows for the exchange of specialized CAx data. Comput. Aided Des. Appl. 13(4), 440–448 (2016). https://doi.org/10.1080/16864360.2015.1131532

    Article  Google Scholar 

  6. Wang, R., et al.: Ontology-based representation of meta-design in designing decision workflows. J. Comput. Inf. Sci. Eng. 19(1) (2019). https://doi.org/10.1115/1.4041474

  7. Goldstein, A., Johanndeiter, T., Frank, U.: Business process runtime models: towards bridging the gap between design, enactment, and evaluation of business processes. IseB 17(1), 27–64 (2018). https://doi.org/10.1007/s10257-018-0374-2

    Article  Google Scholar 

  8. Lampa, S., Dahlö, M., Alvarsson, J., Spjuth, O.: SciPipe: a workflow library for agile development of complex and dynamic bioinformatics pipelines. GigaScience, 8(5) (2019). DOI:https://doi.org/10.1093/gigascience/giz044

  9. Gao, H., Chu, D., Duan, Y., Yin, Y.: Probabilistic model checking-based service selection method for business process modeling. Int. J. Software Eng. Knowl. Eng. 6(27), 897–923 (2017). https://doi.org/10.1142/s0218194017500334

    Article  Google Scholar 

  10. Huang, H., Peng, R., Feng, Z.: Efficient and exact query of large process model repositories in cloud workflow systems. IEEE Trans. Serv. Comput. 11(5), 821–832 (2018). https://doi.org/10.1109/TSC.2015.2481409

    Article  Google Scholar 

  11. Reijers, H.A., Vanderfeesten, I., van der Aalst, W.M.P.: The effectiveness of workflow management systems: a longitudinal study. Int. J. Inf. Manage. 36(1), 126–141 (2016). https://doi.org/10.1016/j.ijinfomgt.2015.08.003

    Article  Google Scholar 

  12. Diamantini, C., Genga, L., Potena, D., van der Aalst, W.M.P.: Building instance graphs for highly variable processes. Expert Syst. Appl. 59, 101–118 (2016). https://doi.org/10.1016/j.eswa.2016.04.021

    Article  Google Scholar 

  13. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar: a business process execution engine on the Ethereum blockchain. Softw. Pract. Exper. 49, 1162–1193 (2019). https://doi.org/10.1002/spe.2702

    Article  Google Scholar 

  14. Aalst, W.M.P.: Everything you always wanted to know about petri nets, but were afraid to ask. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_1

    Chapter  Google Scholar 

  15. Barash, M., Okhotin, A.: Generalized LR parsing algorithm for grammars with one-sided contexts. Theory Comput. Syst. 61(2), 581–605 (2016). https://doi.org/10.1007/s00224-016-9683-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Yarushkina, N.G., Afanasyeva, T.V., Negoda, V.N., Samohvalov, M.K., Namestnikov, A.M., Guskov, GYu., Romanov, A.A.: Integration of project diagrams and ontologies in the aircraft manufacturing enterprise capacity balancing task. Autom. Remote. Control Process. 4(50), 85–93 (2017)

    Google Scholar 

  17. Wongthongtham, P., Pakdeetrakulwong, U., Marzooq, S.H.: Ontology annotation for software engineering project management in multisite distributed software development environments. Softw. Project Manag. Distrib. Comput., pp. 315–343. Springer, Cham (2017)

    Chapter  Google Scholar 

  18. Lisi, F.A., Mencar, C.: A system for fuzzy granulation of OWL ontologies. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF 2016. LNCS (LNAI), vol. 10147, pp. 126–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52962-2_11

    Chapter  Google Scholar 

  19. Aho, A., Sethi, R., Ullman, J., Lam, M.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison-Wesley, Boston (2006)

    MATH  Google Scholar 

  20. Sharov, O.G., Afanas’ev, A.N.: Neutralization of syntax errors in graphic languages. Program. Comput. Softw. 1(34), 61–66 (2008)

    Google Scholar 

  21. Sharov, O.G., Afanasev, A.N.: Methods and tools for translation of graphical diagrams. Program. Comput. Softw. 3(37), 171–179 (2011)

    Article  MathSciNet  Google Scholar 

  22. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Synthesizing program input grammars. ACM SIGPLAN Notices 6(52), 5–110 (2017)

    Google Scholar 

  23. Filhol, M., McDonald, J., Wolfe, R.: Synthesizing sign language by connecting linguistically structured descriptions to a multi-track animation system. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2017. LNCS, vol. 10278, pp. 27–40. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58703-5_3

    Chapter  Google Scholar 

  24. Kopp, A., Orlovskyi, D.: An approach to business process models repository development. Inf. Process. Syst. 2(153), 60–68 (2018)

    Google Scholar 

  25. Harmassi, M., Grigori, D., Belhajjame, K.: Mining workflow repositories for improving fragments reuse. In: Cardoso, J., Guerra, F., Houben, G.-J., Pinto, A.M., Velegrakis, Y. (eds.) KEYSTONE 2015. LNCS, vol. 9398, pp. 76–87. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27932-9_7

    Chapter  Google Scholar 

  26. Diaz, J.S.B., Medeiros, C.B.: WorkflowHunt: combining keyword and semantic search in scientific workflow repositories. In: 2017 IEEE 13th International Conference on e-Science (e-Science), pp. 138–147 (2017) IEEE

    Google Scholar 

  27. Afanasyev, A., Voit, N., Timofeeva, O., Epifanov, V.: Analysis and control of hybrid diagrammatical workflows. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 679, pp. 124–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68321-8_13

    Chapter  Google Scholar 

  28. Voit, N., Kirillov, S., Kanev, D.: Automation of workflow design in an industrial enterprise. In: Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 551–561. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24308-1_44

    Chapter  Google Scholar 

  29. Afanasyev, A., Voit, N., Ukhanova, M., Ionova, I.: Analysis of design-technology workflows in the conditions of large enterprise. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 679, pp. 134–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68321-8_14

    Chapter  Google Scholar 

  30. Afanasyev, A., Ukhanova, M., Ionova, I., Voit, N.: Processing of design and manufacturing workflows in a large enterprise. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 565–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_44

    Chapter  Google Scholar 

  31. Voit, N., Ukhanova, M., Kirillov, S., Bochkov, S.: Method to create the library of workflows. In: Sosnin, P., Maklaev, V., Sosnina, E. (eds.) Proceedings of the IS-2019 Conference, Ulyanovsk, Russia, 24–27 September 2019 (2019). http://ceur-ws.org/Vol-2475/paper8.pdf

  32. Kovalchuk, S., Boukhanovsky, A.: Towards ensemble simulation of complex systems. Proc. Comput. Sci. 51(2015), 532–541 (2015). https://doi.org/10.1016/j.procs.2015.05.280

    Article  Google Scholar 

  33. WhiteStein Technology. https://www.whitestein.com/

Download references

Acknowledgments

The reported research was funded by Russian Foundation for Basic Research and the government of the region of the Russian Federation, grant â„– 18-47-730032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Voit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voit, N., Kirillov, S., Bochkov, S., Ionova, I. (2020). Analytical Model of Design Workflows Organization in the Automated Design of Complex Technical Products. In: Lopata, A., ButkienÄ—, R., GudonienÄ—, D., SukackÄ—, V. (eds) Information and Software Technologies. ICIST 2020. Communications in Computer and Information Science, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-030-59506-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59506-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59505-0

  • Online ISBN: 978-3-030-59506-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics