Skip to main content

A Dual Layer Regression Model for Cross-border E-commerce Industry Sale and Hot Product Prediction

  • Conference paper
  • First Online:
Cognitive Computing – ICCC 2020 (ICCC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12408))

Included in the following conference series:

  • 380 Accesses

Abstract

We introduce a novel regression model for time series forecasting in the cross-border e-commerce domain. In this paper, we present a new regression model for industry sale prediction (ISP) and hot product prediction (HPP) in the cross-border e-commerce domain. E-commerce products contain many attributes which may benefit to the final prediction performance. Based on this assumption, the proposed model employs a novel dual layer regression architecture to improve the generalization by capturing correlation between the historical data and future data, as well as enhancing the relationship of extracted features and target values. Besides, to verify the effectiveness of the proposed model, we establish two cross-border e-commerce datasets about imported lipsticks and shoes. The experimental results demonstrate that our proposed model achieves impressive results compared to a number of competitive baselines and the precision of hot product prediction reached 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.invespcro.com/blog/cross-border-shopping/.

  2. 2.

    https://www.kaola.com/.

  3. 3.

    https://scrapy.org/.

References

  1. Lazer, D., Kennedy, R., King, G., et al.: The parable of Google flu: traps in big data analysis. Science 343(6176), 1203–1205 (2014)

    Article  Google Scholar 

  2. Ginsberg, J., Mohebbi, M.H., Patel, R., et al.: Detecting influenza epidemics using search engine query data. Nature 457(7232), 1012–1014 (2009)

    Article  Google Scholar 

  3. Liu, C., Hoi, S.C., Zhao, P., et al.: Online ARIMA algorithms for time series prediction. In: National Conference on Artificial Intelligence, pp. 1867–1873 (2016)

    Google Scholar 

  4. Shi, Q., Yin, J., Cai, J., et al.: Block Hankel tensor ARIMA for multiple short time series forecasting. In: National Conference on Artificial Intelligence (2020)

    Google Scholar 

  5. Araz, O.M., Bentley, D., Muelleman, R.L., et al.: Using Google flu trends data in forecasting influenza-like-illness related ed visits in Omaha, Nebraska. Am. J. Emerg. Med. 32(9), 1016–1023 (2014)

    Google Scholar 

  6. Zhang, S.Q., Zhou, Z.H.: Harmonic recurrent process for time series forecasting. In: European Conference on Artificial Intelligence (2020)

    Google Scholar 

  7. Box, G.E., Jenkins, G.M.: Some recent advances in forecasting and control. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 17(2), 91–109 (1968)

    Google Scholar 

  8. Peiguang, J., Yuting, S., Xiao, J., et al.: High-order temporal correlation model learning for time-series prediction. IEEE Trans. Cybern. 49, 1–13 (2018)

    Google Scholar 

  9. Box, G.E., Jenkins, G.M.: Time series analysis, forecasting and control. J. Am. Stat. Assoc. 134(3) (1971)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Cho, K., Van Merrienboer, B., Gulcehre, C., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv: Computation and Language (2014)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Kim, Y.: Convolutional neural networks for sentence classification. In: Empirical Methods in Natural Language Processing, pp. 1746–1751 (2014)

    Google Scholar 

  14. Che, Z., Purushotham, S., Cho, K., et al.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2017)

    Article  Google Scholar 

  15. Lai, G., Chang, W., Yang, Y., et al.: Modeling long- and short-term temporal patterns with deep neural networks. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 95–104 (2018)

    Google Scholar 

  16. Mikolov, T., Karafiat, M., Burget, L., et al.: Recurrent neural network based language model. In: Conference of the International Speech Communication Association, pp. 1045–1048 (2010)

    Google Scholar 

  17. Du, J., Gui, L., He, Y., et al.: A convolutional attentional neural network for sentiment classification. In: International Conference on Security. IEEE (2018)

    Google Scholar 

  18. Li, S., Jin, X., Xuan, Y., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Neural Information Processing Systems, pp. 5244–5254 (2019)

    Google Scholar 

  19. Neo, W., Bradley, G., Xue, B., et al.: Deep transformer models for time series forecasting: the influenza prevalence case. arXiv: Computation and Language (2020)

    Google Scholar 

  20. Bahdanau, D., Cho, K., Bengio, Y., et al.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (2015)

    Google Scholar 

  21. Chorowski, J., Bahdanau, D., Serdyuk, D., et al.: Attention-based models for speech recognition. In: Neural Information Processing Systems, pp. 577–585 (2015)

    Google Scholar 

  22. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Neural Information Processing Systems, pp. 6000–6010 (2017)

    Google Scholar 

  23. Salinas, D., Flunkert, V., Gasthaus, J., et al.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–191 (2019)

    Google Scholar 

  24. Rangapuram, S.S., Seeger, M., Gasthaus, J., et al.: Deep state space models for time series forecasting. In: Neural Information Processing Systems, pp. 7785–7794 (2018)

    Google Scholar 

  25. Jian, L., Chunlin, L., Lanping, Z., et al.: Research on sales information prediction system of e-commerce enterprises based on time series model. Inf. Syst. E-Bus. Manage. (2019)

    Google Scholar 

  26. Charles, M.: Marketing and e-commerce as tools of development in the Asia-Pacific region: a dual path. Int. Market. Rev. 21(3), 301–320 (2004)

    Google Scholar 

  27. Kechyn, G., Yu, L., Zang, Y., et al.: Sales forecasting using WaveNet within the framework of the Kaggle competition. arXiv: Learning (2018)

    Google Scholar 

  28. Choi, T., Yu, Y., Au, K., et al.: A hybrid SARIMA wavelet transform method for sales forecasting. Decis. Support Syst. 51(1), 130–140 (2011)

    Google Scholar 

  29. Chen, S., Hwang, J.: Temperature prediction using fuzzy time series. Syst. Man Cybern. 30(2), 263–275 (2000)

    Google Scholar 

  30. Xiao, C., Chen, N., Hu, C., et al.: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. (2019)

    Google Scholar 

  31. Ariyo, A.A., Adewumi, A.O., Ayo, C.K., et al.: Stock price prediction using the ARIMA model. In: International Conference on Computer Modelling and Simulation, pp. 106–112 (2014)

    Google Scholar 

  32. Singh, R., Srivastava, S.: Stock prediction using deep learning. Multimed. Tools Appl. 76(18), 18569–18584 (2017)

    Article  Google Scholar 

  33. Sutskever, I., Vinyals, O., Le, Q.V., et al.: Sequence to sequence learning with neural networks. arXiv: Computation and Language (2014)

    Google Scholar 

  34. Ke, G., Meng, Q., Finley, T.W., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Neural Information Processing Systems, pp. 3149–3157 (2017)

    Google Scholar 

  35. Luo, C.S., Zhou, L.Y., Wei, Q.F.: Application of SARIMA model in cucumber price forecast. Appl. Mech. Mater. 373, 1686–1690 (2013)

    Article  Google Scholar 

  36. Zou, H., Hastie, T.: Addendum: regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B 67(5), 768–768 (2005)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Key Technologies Research and Development Program of Shenzhen JSGG20170817140856618, Shenzhen Foundational Research Funding JCYJ20180507183527919, National Natural Science Foundation of China 61632011, 61876053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, W., Su, H., Liu, Y., Xu, R. (2020). A Dual Layer Regression Model for Cross-border E-commerce Industry Sale and Hot Product Prediction. In: Yang, Y., Yu, L., Zhang, LJ. (eds) Cognitive Computing – ICCC 2020. ICCC 2020. Lecture Notes in Computer Science(), vol 12408. Springer, Cham. https://doi.org/10.1007/978-3-030-59585-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59585-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59584-5

  • Online ISBN: 978-3-030-59585-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics