Skip to main content

Improving Dense Pixelwise Prediction of Epithelial Density Using Unsupervised Data Augmentation for Consistency Regularization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Although the amount of medical data keeps increasing, data annotations are scarce and often very difficult to obtain. It is even harder for the case that involves multi-modal imaging or data such as radiology-pathology correlation. In this regard, semi-supervised learning has the potential to leverage unlabeled data for improved medical image analysis. Herein, we propose a semi-supervised learning framework for the dense pixelwise prediction in multi-parametric magnetic resonance imaging (mpMRI). The proposed method predicts the epithelial density in mpMRI per-voxel basis. The ground truth annotations are only obtainable from the corresponding pathology images, which are often unavailable for mpMRI. Introducing unsupervised data augmentation and supervised training signal annealing strategies during training, the proposed method utilizes both labeled and unlabeled mpMRI in an efficient and effective manner. The experimental results demonstrate that the proposed framework is effective in improving the stability and accuracy of the density prediction. The proposed framework achieves the mean absolute error of 6.493, compared to 7.353 by the supervised learning counterpart, outperforming other competing methods. The results suggest that the semi-supervised learning framework could aid in resolving the scarcity of medical data and annotations, in particular for radiology-pathology correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A.K., Chandrasekaran, B.: 39 Dimensionality and sample size considerations in pattern recognition practice. Handb. Stat. 2, 835–855 (1982)

    Article  Google Scholar 

  2. Cawley, G.C., Talbot, N.L.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13, 252–264 (1991)

    Article  Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  5. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3, 1–130 (2009)

    Article  Google Scholar 

  6. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  7. Baur, C., Albarqouni, S., Navab, N.: Semi-supervised deep learning for fully convolutional networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 311–319. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_36

    Chapter  Google Scholar 

  8. Sedai, S., et al.: Uncertainty guided semi-supervised segmentation of retinal layers in OCT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 282–290. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_32

    Chapter  Google Scholar 

  9. Sorace, J., Aberle, D.R., Elimam, D., Lawvere, S., Tawfik, O., Wallace, W.D.: Integrating pathology and radiology disciplines: an emerging opportunity? BMC Med. 10, 100 (2012)

    Article  Google Scholar 

  10. Langer, D.L., et al.: Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K trans, ve, and corresponding histologic features. Radiology 255, 485–494 (2010)

    Article  Google Scholar 

  11. Kwak, J.T., et al.: Prostate cancer: a correlative study of multiparametric MR imaging and digital histopathology. Radiology 285, 147–156 (2017)

    Article  Google Scholar 

  12. Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., Le, Q.V.: Unsupervised data augmentation. arXiv preprint (2019)

    Google Scholar 

  13. BenTaieb, A., Hamarneh, G.: Uncertainty driven multi-loss fully convolutional networks for histopathology. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552, pp. 155–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-3_17

    Chapter  Google Scholar 

  14. Smith, S.L., Kindermans, P.-J., Le, Q.V.: Don’t decay the learning rate, increase the batch size. In: International Conference on Learning Representations (2018)

    Google Scholar 

  15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1C1B2012433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tae Kwak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

To, M.N.N. et al. (2020). Improving Dense Pixelwise Prediction of Epithelial Density Using Unsupervised Data Augmentation for Consistency Regularization. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics