Skip to main content

Intra-operative Forecasting of Growth Modulation Spine Surgery Outcomes with Spatio-Temporal Dynamic Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12261))

Abstract

Vertebral Body Growth Modulation (VBGM) allows to treat mild to severe spinal deformations by tethering vertebral bodies together, helping to preserve lower back flexibility. Forecasting the outcome of VBGM from skeletally immature patients remains elusive with several factors involved in corrective vertebral tethering, but could help orthopaedic surgeons plan and tailor VBGM procedures prior to surgery. We introduce a novel intra-operative framework forecasting the outcomes during VBGM surgery in scoliosis patients. The method is based on spatial-temporal corrective networks, which learns the similarity in segmental corrections between patients and integrates a long-term shifting mechanism designed to cope with timing differences in onset to surgery dates, between patients in the training set. The model captures dynamic geometric dependencies in scoliosis patients, as well as ensuring long-term dependancy with temporal dynamics in curve evolution. The loss function of the network introduces a regularization term based on learned group-average piecewise-geodesic path to ensure the generated corrective transformations are coherent with regards to the observed evolution of spine corrections at follow-up exams. The network was trained on 695 3D spine models and tested on 72 patients using a set of pre-operative spine reconstructions as inputs. The spatio-temporal network predicted outputs with errors of \(2.1 \pm 0.9\) mm in 3D anatomical landmarks, and yielding geometries similar to ground-truth reconstructions.

Supported by the Canada Research Chairs and NSERC Discovery Grants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Recurrent neural networks for aortic image sequence segmentation with sparse annotations. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 586–594. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_67

    Chapter  Google Scholar 

  2. Beauséjour, M., Roy-Beaudry, M., Goulet, L., Labelle, H.: Patient characteristics at the initial visit to a scoliosis clinic: a cross-sectional study in a community without school screening. Spine 32(12), 1349–1354 (2007)

    Article  Google Scholar 

  3. Boumal, N., Absil, P.A.: A discrete regression method on manifolds and its application to data on SO (n). IFAC Proc. Volumes 44(1), 2284–2289 (2011)

    Article  Google Scholar 

  4. Cheng, J.C., et al.: Adolescent idiopathic scoliosis. Nat. Rev. Dis. Primers 1(1), 1–21 (2015)

    MathSciNet  Google Scholar 

  5. Cobetto, N., Parent, S., Aubin, C.E.: 3D correction over 2 years with anterior vertebral body growth modulation: a finite element analysis of screw positioning, cable tensioning and postop functional activities. Clinical Biome. 51, 26–33 (2018)

    Article  Google Scholar 

  6. Crawford III, C.H., Lenke, L.G.: Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. JBJS 92(1), 202–209 (2010)

    Article  Google Scholar 

  7. DiPietro, R., et al.: Recognizing surgical activities with recurrent neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 551–558. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_64

    Chapter  Google Scholar 

  8. Humbert, L., de Guise, J., Aubert, B., Godbout, B., Skalli, W.: 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med. Eng. Phy. 31(6), 681–87 (2009)

    Article  Google Scholar 

  9. Kadoury, S., Mandel, W., Roy-Beaudry, Nault, M.L., Parent S: 3-D morphology prediction of progressive spinal deformities from probabilistic modeling of discriminant manifolds. IEEE Trans. Med. Imaging 36(5), 1194–1204 (2017)

    Article  Google Scholar 

  10. Mandel, W., Turcot, O., Knez, D., Parent, S., Kadoury, S.: Spatiotemporal manifold prediction model for anterior vertebral body growth modulation surgery in idiopathic scoliosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 206–213. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_24

    Chapter  Google Scholar 

  11. Mandel, W., Turcot, O., Knez, D., Parent, S., Kadoury, S.: Prediction outcomes for anterior vertebral body growth modulation surgery from discriminant spatiotemporal manifolds. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1565–1575 (2019). https://doi.org/10.1007/s11548-019-02041-w

    Article  Google Scholar 

  12. Nault, M.L., Mac-Thiong, J.M., Roy-Beaudry, M., Turgeon, I., Parent, S.: Three-dimensional spinal morphology can differentiate between progressive and nonprogressive patients with adolescent idiopathic scoliosis at the initial presentation: a prospective study. Spine 39(10), E601 (2014)

    Article  Google Scholar 

  13. Parent, S., Newton, P., Wenger, D.: Adolescent idiopathic scoliosis: etiology, anatomy, natural history, and bracing. Instr. Course Lect. 54, 529–536 (2005)

    Google Scholar 

  14. Samdani, A.F., Ames, R.J., Kimball, J.S., Pahys, J.M., Grewal, H., Pelletier, G.J., Betz, R.R.: Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine 39(20), 1688–1693 (2014)

    Article  Google Scholar 

  15. Samdani, A.F., et al.: Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: one-year results on the first 32 patients. Eur. Spine J. 24(7), 1533–1539 (2014). https://doi.org/10.1007/s00586-014-3706-z

    Article  Google Scholar 

  16. Skaggs, D.L., Akbarnia, B.A., Flynn, J.M., Myung, K., Sponseller, P., Vitale, M.: A classification of growth friendly spine implants. J. Pediatr. Orthop. 34(3), 260–274 (2014)

    Article  Google Scholar 

  17. Thong, W., Parent, S., Wu, J., Aubin, C.-E., Labelle, H., Kadoury, S.: Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models. Eur. Spine J. 25(10), 3104–3113 (2016). https://doi.org/10.1007/s00586-016-4426-3

    Article  Google Scholar 

  18. Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5668–5675 (2019)

    Google Scholar 

  19. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Kadoury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandel, W., Parent, S., Kadoury, S. (2020). Intra-operative Forecasting of Growth Modulation Spine Surgery Outcomes with Spatio-Temporal Dynamic Networks. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics