Skip to main content

Learning MRI k-Space Subsampling Pattern Using Progressive Weight Pruning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

Abstract

Magnetic resonance (MR) imaging is widely used in clinical scenarios, while the long acquisition time is still one of its major limitations. An efficient way to accelerate the imaging process is to subsample the k-space, where MR signal is physically acquired, and then estimate the fully-sampled MR image from subsampled signal with a learned reconstruction model. In this work, we are inspired from the idea of neural network pruning and propose a novel strategy to learn the k-space subsampling pattern and the reconstruction model alternately in a data-driven fashion. More specifically, in each iteration of learning, we first greedily eliminate a few phases that are considered less important in the k-space according to their assigned weights, and then fine-tune the reconstruction model. In our pilot study, experiments demonstrated the robustness and superiority of our proposed method in both single- and multi-modal MRI settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahadir, C.D., Dalca, A.V., Sabuncu, M.R.: Learning-based optimization of the under-sampling pattern in MRI. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 780–792. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_61

    Chapter  Google Scholar 

  2. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  3. Feinberg, D.A., Hale, J.D., Watts, J.C., Kaufman, L., Mark, A.: Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 161(2), 527–531 (1986)

    Article  Google Scholar 

  4. Haldar, J.P., Kim, D.: OEDIPUS: an experiment design framework for sparsity-constrained MRI. IEEE Trans. Med. Imaging 38(7), 1545–1558 (2019)

    Article  Google Scholar 

  5. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. arXiv:1607.03250 [cs], July 2016

  6. Jackson, J., Meyer, C., Nishimura, D., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding (computerised tomography application). IEEE Trans. Med. Imaging 10(3), 473–478 (1991)

    Article  Google Scholar 

  7. Jin, K.H., Unser, M., Yi, K.M.: Self-supervised deep active accelerated MRI. arXiv:1901.04547 [cs], January 2019

  8. Levine, E., Hargreaves, B.: On-the-fly adaptive k-space sampling for linear MRI reconstruction using moment-based spectral analysis. IEEE Trans. Med. Imaging 37(2), 557–567 (2018)

    Article  Google Scholar 

  9. Liu, D.D., Liang, D., Liu, X., Zhang, Y.T.: Under-sampling trajectory design for compressed sensing MRI. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 73–76, August 2012

    Google Scholar 

  10. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2755–2763, October 2017

    Google Scholar 

  11. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  12. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  13. Marseille, G.J., de Beer, R., Fuderer, M., Mehlkopf, A.F., van Ormondt, D.: Nonuniform phase-encode distributions for MRI scan time reduction. J. Magn. Reson., Ser. B 111(1), 70–75 (1996)

    Article  Google Scholar 

  14. McGibney, G., Smith, M.R., Nichols, S.T., Crawley, A.: Quantitative evaluation of several partial fourier reconstruction algorithms used in MRI. Magn. Reson. Med. 30(1), 51–59 (1993)

    Article  Google Scholar 

  15. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11256–11264, June 2019

    Google Scholar 

  16. Paszke, A., et al.: PyTorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  17. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)

    Article  Google Scholar 

  18. Tsai, C.M., Nishimura, D.G.: Reduced aliasing artifacts using variable-density k-space sampling trajectories. Magn. Reson. Med. 43(3), 452–458 (2000)

    Article  Google Scholar 

  19. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020)

    Article  Google Scholar 

  20. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517, April 2016

    Google Scholar 

  21. Xiang, L., et al.: Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 215–223. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_25

    Chapter  Google Scholar 

  22. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated MRI. arXiv:1811.08839 [physics, stat], December 2019

  23. Zhang, Z., Romero, A., Muckley, M.J., Vincent, P., Yang, L., Drozdzal, M.: Reducing uncertainty in undersampled MRI reconstruction with active acquisition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2049–2058 (2019)

    Google Scholar 

  24. Zijlstra, F., Viergever, M.A., Seevinck, P.R.: Evaluation of variable density and data-driven K-space undersampling for compressed sensing magnetic resonance imaging. Invest. Radiol. 51(6), 410–419 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Key Research and Development Program of China (2018YFC0116400), Science and Technology Commission of Shanghai Municipality (19QC1400600), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Wang or Shu Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xuan, K., Sun, S., Xue, Z., Wang, Q., Liao, S. (2020). Learning MRI k-Space Subsampling Pattern Using Progressive Weight Pruning. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics