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Abstract. With growing emphasis on personalized cancer-therapies, ra-
diogenomics has shown promise in identifying target tumor mutational
status on routine imaging (i.e. MRI) scans. These approaches largely
fall into two categories: (1) deep-learning/radiomics (context-based) that
employ image features from the entire tumor to identify the gene mu-
tation status, or (2) atlas (spatial)-based to obtain likelihood of gene
mutation status based on population statistics. While many genes (i.e.
EGFR, MGMT) are spatially variant, a significant challenge in reliable
assessment of gene mutation status on imaging is the lack of available
co-localized ground truth for training the models. We present Spatial-
And-Context aware (SpACe) ”virtual biopsy” maps that incorporate
context-features from co-localized biopsy site along with spatial-priors
from population atlases, within a Least Absolute Shrinkage and Selection
Operator (LASSO) regression model, to obtain a per-voxel probability
of the presence of a mutation status (M+ vs M−). We then use prob-
abilistic pair-wise Markov model to improve the voxel-wise prediction
probability. We evaluate the efficacy of SpACe maps on MRI scans with
co-localized ground truth obtained from biopsy, to predict the mutation
status of 2 driver genes in Glioblastoma (GBM): (1) EGFR+ versus
EGFR−, (n=91), and (2) MGMT+ versus MGMT−, (n=81). When
compared against state-of-the-art deep-learning (DL) and radiomic mod-
els, SpACe maps obtained training and testing accuracies of 90% (n=71)
and 90.48% (n=21) in identifying EGFR amplification status, compared
to 80% and 71.4% via radiomics, and 74.28% and 65.5% via DL. For
MGMT methylation status, training and testing accuracies using SpACe
were 88.3% (n=61) and 71.5% (n=20), compared to 52.4% and 66.7%
using radiomics, and 79.3% and 68.4% using DL. Following validation,
SpACe maps could provide surgical navigation to improve localization
of sampling sites for targeting of specific driver genes in cancer.
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1 Introduction

With treatments for solid cancers transitioning towards personalized therapy,
mutational profiling for identifying target gene mutation status or gene amplifi-
cation status using tissue biopsies is becoming status-quo for most cancers. How-
ever, a significant challenge in reliable assessment of gene mutation or amplifica-
tion status, is the underlying genomic heterogeneity which makes it challenging
to identify the “true” mutational status based on random tissue sampling [6].
Multiple studies have shown that certain gene mutations (e.g. MGMT promoter
methylation, EGFR) have varying expressions across different parts of the tumor
or between primary or secondary metastatic sites [14,13]. There is hence a need
for developing “virtual biopsy” techniques on imaging that can comprehensively
capture the gene mutation heterogeneity of solid tumors, and potentially assist
in surgical navigation to identify sampling sites for biopsy targeting.

The field of radiogenomics has provided a surrogate mechanism to predict
gene mutational status on routine imaging (i.e. MRI) by training machine-
learning models. Most of the existing radiogenomic models fall in two categories:
(1) deep learning [2,7,8]/radiomics [9,11,4], and (2) atlas-based probabilistic ap-
proaches [3,1]. In the absence of co-localized biopsy sites on MRI, deep learn-
ing/radiomic approaches employ features from the entire tumor to predict the
gene mutational status. In contrast, atlases-based approaches obtain the like-
lihood of the mutational status of driver genes such as MGMT and EGFR at
different spatial locations by creating probabilistic radiographic atlases obtained
from a large population. These population-based approaches however do not
leverage any tumor-specific information in the model.

In this work, we present the first-attempt at creating “virtual biopsy” ra-
diogenomic maps for predicting gene mutational status on MRI, by combin-
ing two complementary attributes that capture mutational heterogeneity at: (1)
population-level via spatial-priors for presence or absence of mutation status
(M+,M−) using probabilistic atlases from a retrospective cohort, and (2) local
tumor-level by incorporating context-priors that capture mutational heterogene-
ity via radiomic attributes obtained from a stereotactically co-localized biopsy
site within the tumor. The spatial and context priors are combined within a
Least Absolute Shrinkage and Selection Operator (LASSO) regression model
to obtain a per-voxel probability of the likelihood of increased expression of the
gene mutation (M+,M−) at that location. The prediction probabilities obtained
for every voxel are further improved using probabilistic pairwise Markov models.
In this work, we evaluate these Spatial and Context Aware (SpACe) maps in
the context of two problems in Glioblastoma (GBM): (1) predicting EGFR sta-
tus (amplified (EGFR+), non-amplified (EGFR−)), and (2) predicting MGMT
status (methylated (MGMT+), non-methylated (MGMT−)), from routine MRI
scans. The pipeline of the entire workflow is illustrated in Figure 1.
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Fig. 1. Fig. 1: Overview of the workflow of SpACe to create “virtual biopsy” maps.

2 Methods

2.1 Notation

We dene an image scene I as I = (C, f), where I is a spatial grid C of voxels
c ∈ C, in a 3D space, R3. Each voxel, c ∈ C is associated with an intensity value
f(c). IB represents the co-localized biopsy location on MRI scans, such that
IB ⊂ I. F(c) denotes the feature set obtained for every c ∈ CB . For gene M ,
M+ defines mutated/methylated, whileM− defines non-mutated/unmethylated.

2.2 Computing context-aware mutational heterogeneity from
stereotactic biopsy locations (FCO)

We define “context” as local heterogeneity attributes computed from the co-
localized biopsy site on imaging, using radiomic features including Haralick
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features (capture image heterogeneity [5]), Gabor features (capture structural
details at different orientations and scales), Laws (capture spots and ripples-
like patterns), and CoLlAGe features (capture localized gradient orientation
changes [12]). Specifically, for every c ∈ CB , we extract a set of 3D radiomic
features (i.e. Haralick, Gabor, Laws, CoLlAGe). We define Fkθ(c), where θ is
the type of feature family (e.g. Haralick, Gabor), and k ∈ {1, ..., n}, where n
is the number of feature attributes for every feature family. Feature pruning is
then conducted on the extracted features using Spearmans correlation metric,
to eliminate redundant features. The pruned “context-aware” features (152 for
EGFR cohort, 149 for MGMT cohort) are finally aggregated into one feature
descriptor FCO.

2.3 Computing spatially-aware priors (FS) for likelihood of gene
mutation status (M+,M−) using probabilistic atlases

Using the lesion segmentation obtained for every patient in the training set, two
different population atlases for gene M are constructed using subjects that be-
long to either M+ or M−. This is done to quantify the frequency of occurrence
of every voxel across M+ and M−, and compute voxel-wise probability values,
Pw(c), w ∈ (M+,M−). All scans need to first be registered to an isotropic refer-
ence atlas (i.e. MNI152; Montreal Neurological Institute). The intensity values
are then averaged across c ∈ C across all the annotated binary images of all
patients involved in the study. This means that for c ∈ C, two probability values
from these two atlases could be obtained, that characterize the probability of a
voxel c being M+ or M−. The 2 probability values (PM+ , PM−) for every voxel
c ∈ C are finally aggregated in the spatial feature descriptor FS = [PM+ , PM− ].

2.4 Creating SpACe maps for predicting voxel-wise mutational
heterogeneity in the tumor

In order to obtain a voxel-wise prediction p(c) of the gene mutation status, the
context descriptor (FCO), spatial descriptor (FS), age (FA), and gender (FG) of
every patient in the training set, are incorporated within a LASSO model [15].
LASSO model is selected to obtain the probability score using a parsimonious
feature set by utilizing its capability in reducing variance when shrinking fea-
tures, while simulteneously not increasing the bias. We designed the LASSO
model to perform regularization of feature parameters as follows: [β̂] = argmin{|y−
FCOβCO|2 + λCO |βCO|+ |y − FSβS |2 + λS |βS |+ |y − FAβA|2 + λA|βA|+ |y −
FGβG|2 + λG|βG|}, where [β̂] = {β̂1, ..., β̂d} is the shrinked set of d coefficients
obtained after regularization, y ∈ [M+,M−], and λ is the penalty term. The
voxel-wise probability is then computed as the weighted sum of the selected fea-
tures for the set of coefficients [β̂], as follows: pSpACe(c) =

∑d
j=1 β̂jFj(c), where

j ∈ {1, ..., d}, and d is the number of features selected by LASSO. After obtain-
ing the probabilistic map for every c ∈ CB , we incorporate probabilistic pairwise
Markov models (PPMMs) to improve voxel-wise gene mutation prediction [10].
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PPMMs are adopted from Markov Random Fields, through formulating priors
in terms of probability density functions, hence allowing the creation of more
robust prediction models. The input to this model is the voxel-wise probability
values obtained from LASSO model. Interaction between neighboring sites is
then modelled, to improve voxel-wise probability scores, and to finally obtain
FSpACe maps.

2.5 Applying SpACe maps on testing sets for predicting voxel-wise
mutational heterogeneity within the tumor

The top features selected on the training set are applied to the entire tumor
on the test set, for obtaining voxel-wise probabilities for predicting the muta-
tion status. For the purpose of computing accuracy of our model, we predict
the mutation status [M+, M−] based on pooled probability values for an al-
ready known biopsy site, and compare the prediction with the known mutation
status. As an additional qualitative analysis, we threshold the probability val-
ues obtained from the entire tumor (threshold obtained empirically), followed
by connected component analysis and PPMM, to obtain 2-3 hot-spots of high
probability mutation sites. These hot-spots prospectively could be used to drive
surgical navigation as potential sites for biopsy localization.

3 Experimental Design

3.1 Data description and preprocessing

We employed a unique retrospective dataset of a total of 100 GBM patients who
underwent CT-guided biopsy for disease confirmation, since surgical resection
was not feasible (due to location or other clinical reasons) for these patients.
Segmentation of the enhancing lesion was conducted by an experienced radiol-
ogist on the MR scans. The biopsy site was co-localized by co-registering CT
images with the MRI scans, followed by expert evaluation for confirmation. All
scans were then registered to an MNI152 atlas and then bias-corrected using N4
bias correction [16]. These studies were then divided into two cohorts: (a) S1:
EGFR amplified (EGFR+) versus non-amplified (EGFR−) studies, and (2) S2:
MGMT methlated (MGMT+) versus unmethylated (MGMT+). For S1, we had
a total of 91 subjects of which 70 were used for training (35 amp, 35 non-amp),
and the remaining 21 (6 EGFR+, 15 EGFR−) were used for validation. For S2,
of a total of 81 subjects, 60 (28 MGMT+, 32 MGMT−) were used for training
, while 21 subjects were used for validation (5 MGMT+, 16 MGMT−).

3.2 Implementation details

Two experiments were set-up using cohorts S1 (Experiment 1: EGFR+ versus
EGFR−) and S2 (Experiment 2: MGMT+ versus MGMT−), respectively.
For both experiments, we extracted a total of 316 3D context-features for every
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c ∈ CB (where CB was a 1-cm diameter sphere in our case), including 1 raw
feature, 8 gray features, 13 gradient features, 26 Haralick features, 64 Gabor
features, 152 Laws features, and 52 CoLlAGe features, extracted using 2 win-
dow sizes w = 3 × 3 and w = 5 × 5. These features are pruned as detailed in
Section 2.2 to obtain FCO. In addition, population atlases were constructed to
quantify the frequency of occurrence of EGFR+ versus EGFR− and MGMT+

versus MGMT− as detailed in Section 2.3. Similarly, for both experiments,
FSpACe was created following 10 runs of 10-fold cross validation, as detailed in
Section 2.4. The median value of the probabilities across voxels of all subjects
was used as a threshold to determine M+,M− for every voxel. Finally, majority
voting was used to obtain the mutation status for every biopsy site.

3.3 Comparative strategies

In order to evaluate the efficacy of SpACe model, we compared our results with
two state-of-the-art methods, radiomic-based, and deep-learning-based that em-
ploy features from the entire tumor to predict amplification/methylation status.
For the radiomic- experiment (FRad, a total of 316 radiomic features were ex-
tracted from the entire enhancing lesion of every subject (same attributes that
were extracted from biopsy sites), and the feature vector was constructed from
the 4 statistics: median, variance, skewness, and kurtosis values that were com-
puted for every feature across all voxels for this patient, for total of 1264 features.
After feature pruning, 283 features were fed to the LASSO model to compute
patient-wise scores that determined their gene status.

For the DL approach to predict the mutation status, we used a deep residual
neural network as described in [7]. ResNet has previously been used to pre-
dict EGFR and MGMT mutation in GBM and other cancers [7,17]. Specifically,
patches of size 128x128 were sampled from the center of the selected MRI slices
and augmented using horizontal flips and random rotations to enlarge the lim-
ited training data. Following patch sampling, we trained separate deep Res-Net
networks with 18 layers (ResNet-18) for the two experiments. In order to train
the networks on MRI scans, we used pre-trained model on ImageNet and per-
formed transfer learning using the sampled patches from MRI scans. We selected
ResNet-18 because it removes the vanishing gradient problem and the network
has several layers containing composite function of operations such as batch nor-
malization (BN), convolution (Conv), rectified linear units (ReLU) and pooling
for non-linear transformation of the input. We trained each model for 25 epochs
with dropout of 0.2 to avoid overfitting. Models with minimum loss were locked
down to test the patches obtained from the test set.

4 Results and Discussion

4.1 Experiment 1: Determining EGFR amplification status

Using FCO alone, training and testing accuracies were reported as 61.43% and
66.67% respectively. Combination of FCO features with FS features into LASSO
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Fig. 2. EGFR+ (a) and EGFR− (b) cases with voxel-wise probabilities calculated
using SpACe maps. Heatmaps with voxel-wise probabilities for the entire tumor area
for EGFR+ (c) and EGFR− (d) are shown, where ”red” represents amplified and
”blue” represents un-amplified status. Confirmed biopsy sites are enclosed by a circle.
(e), (f) show biopsy region heatmaps, which confirm the mutation status of the tumor.
Tumor heatmaps in (c), (d) show other clusters that could be potential candidates
for biopsy sites. The prediction accuracies for predicting mutation status in the two
patients in (a) and (b) using SpACe were 92.5% and 96% respectively. (g) shows a bar
graph with accuracies for both training and testing sets for EGFR+ versus EGFR−,
using FCO, [FCO. FS ], FRad, FDL, and FSpACe.

model yielded training and testing accuracies of 80% and 90.48% respectively,
using 8 FCO (1 raw, 1 gray, 2 gradient, 1 Haralick, 3 Gabor) and 2 FS features.
This implies that incorporating FS improved the models performance, rather
than using FCO alone. Next, we evaluated the efficacy of including FCO, FS, and
clinical features (FA, FG) into our model to predict the mutation status. Clinical
features did not improve accuracy of the model. PPMMs were then employed,
and successfully corrected the amplification status for 7 subjects from the train-
ing set, yielding final training and testing accuracies of 90% (1 amp, 6 non-amp
subjects were misclassified out of 70) and 90.48% (2 non-amp subjects are mis-
classified out of 21) respectively. Results on 2 different patients are illustrated
in Figure 2.

Using radiomic features from the entire tumor to predict mutation status
yielded training and testing accuracies of 80% and 71.43% respectively. Further,
the Res-Net model to predict EGFR status yielded training and testing accura-
cies of 74.28% and 65.52%, significantly underperforming in comparison to the
SpACe model.

4.2 Experiment 2: Determining MGMT methylation status

Using FCO alone, the model achieved training and testing accuracies of 76.67%
and 57.14% respectively. When combining FCO features with FS features into
LASSO model, we obtained training and testing accuracies of 81.67% and 61.9%
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Fig. 3. MGMT+ (a) and MGMT− (b) cases with voxel-wise probabilities calculated
using SpACe maps. Heatmaps with voxel-wise probabilities for the entire tumor area for
MGMT+ (c) and MGMT− cases (d) are shown, where ”red” represents methylated
and ”blue” represents unmethylated status. Confirmed biopsy sites are enclosed by
a circle. (e), (f) show biopsy region heatmaps, which confirm the mutation status
of the tumor. Tumor heatmaps in (c), (d) show other clusters that could be potential
candidates for biopsy sites. The prediction accuracies for cases (a) and (b) using SpACe
are 98% and 99% respectively. (g) shows a bar graph with accuracies for both training
and testing sets using FCO, [FCO. FS ], FRad, FDL, and FSpACe.

respectively, which implies that incorporating FS improved the models perfor-
mance, rather than using FCO alone. Next, using FCO , FS, and clinical features,
the model picked a set of 12 features that included 8 FCO features; 1 gray, 3 Har-
alick, and 4 Gabor features, in addition to PMGMT+ , PMGMT− , FA, and FG. This
model yielded training and testing accuracies of 83.3% and 66.67% respectively.
Applying PPMMs for predicting methylation status on these results corrected
the mutation status for 3 training subjects as well as 1 testing subject, with final
accuracies of 88.3% and 71.5% respectively. Results on 2 different patients are
illustrated in Figure 3.

When using radiomic features from the entire tumor to predict methylation
status, training and testing accuracies were 76.67% and 52.38%. In addition,
the DL model that was trained to predict methylation status gave training and
testing accuracies of 79.37% and 68.40%, suggesting that results obtained using
SpACe maps outperformed both comparative approaches.

5 Concluding Remarks

In this work, we presented the first-attempt at creating “virtual biopsy” radio-
genomic maps for predicting gene mutational status on MRI, by combining two
complementary attributes: (1) spatial-priors for presence or absence of mutation
status via probabilistic atlases from a retrospective cohort, and (2) context-priors
to capture mutational heterogeneity using radiomic attributes obtained from a
stereotactically co-localized biopsy site within the tumor. These spatial-and-
context aware (SpACe) maps were evaluated in the context of two experiments:
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predicting (1) EGFR amplification status, and (2) MGMT amplification status,
on Glioblastoma. Our results demonstrated that SpACe outperformed state-of-
the-art radiomic and deep learning approaches that were performed on the entire
tumor, instead of learning features from the co-localized biopsy site. The virtual
biopsy maps created using SpACe could not only improve prediction of gene mu-
tation status of the tumor, but could also serve as surgical navigation to guide
potential biopsy sites for specific gene mutations.
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6. Koljenović, S., et al.: Discriminating vital tumor from necrotic tissue in hu-
man glioblastoma tissue samples by raman spectroscopy. Laboratory Investigation
82(10), 1265–1277 (2002)

7. Korfiatis, P., et al.: Residual deep convolutional neural network predicts mgmt
methylation status. Journal of digital imaging 30(5), 622–628 (2017)

8. Li, Z., Wang, Y., Yu, J., Guo, Y., Cao, W.: Deep learning based radiomics (dlr)
and its usage in noninvasive idh1 prediction for low grade glioma. Scientific reports
7(1), 1–11 (2017)

9. Li, Z.C., et al.: Multiregional radiomics features from multiparametric mri for
prediction of mgmt methylation status in glioblastoma multiforme: a multicentre
study. European radiology 28(9), 3640–3650 (2018)

10. Monaco, J.P., et al.: High-throughput detection of prostate cancer in histological
sections using probabilistic pairwise markov models. Medical image analysis 14(4),
617–629 (2010)

11. Parker, N.R., et al.: Intratumoral heterogeneity identified at the epigenetic, genetic
and transcriptional level in glioblastoma. Scientific reports 6, 22477 (2016)

12. Prasanna, P., et al.: Co-occurrence of local anisotropic gradient orientations (col-
lage): a new radiomics descriptor. Scientific reports 6, 37241 (2016)

13. Puppa, D., et al.: Mgmt expression and promoter methylation status may depend
on the site of surgical sample collection within glioblastoma: a possible pitfall in
stratification of patients? Journal of neuro-oncology 106(1), 33–41 (2012)

14. Qazi, M., et al.: Intratumoral heterogeneity: pathways to treatment resistance and
relapse in human glioblastoma. Annals of Oncology 28(7), 1448–1456 (2017)

15. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996)



10 F. Author et al.

16. Tustison, N.J., et al.: N4itk: improved n3 bias correction. IEEE transactions on
medical imaging 29(6), 1310–1320 (2010)

17. Xiong, J., et al.: Implementation strategy of a cnn model affects the performance
of ct assessment of egfr mutation status in lung cancer patients. IEEE Access 7,
64583–64591 (2019)


	Spatial-And-Context aware (SpACe) ``virtual biopsy'' radiogenomic maps to target tumor mutational status on structural MRI

