Skip to main content

Transport-Based Joint Distribution Alignment for Multi-site Autism Spectrum Disorder Diagnosis Using Resting-State fMRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) has been a promising technique for computer-aided diagnosis of neurodevelopmental brain diseases, e.g., autism spectrum disorder (ASD), due to its sensitivity to the progressive variations of brain functional connectivity. To overcome the challenge of overfitting resulting from small sample size, recent studies began to fuse multi-site datasets for improving model generalization. However, these existing methods generally simply combine multiple sites into single dataset, ignoring the heterogeneity (i.e., data distribution discrepancy) among diverse sources. Actually, distribution alignment, alleviating the inter-site distribution shift, is the fundamental step for multi-site data analysis. In this paper, we propose a novel Transport-based Multi-site Joint Distribution Adaptation (TMJDA) framework to reduce multi-site heterogeneity for ASD diagnosis by aligning joint feature and label distribution using optimal transport (OT). Specifically, with the given target domain and multi-source domains, our TMJDA method concurrently performs joint distribution alignment in each pair of source and target domains, upon which, multiple domain-specific classifiers are further aligned by penalizing decision inconsistency among diverse classifiers for reducing inter-site distribution discrepancy. We evaluated our TMJDA model on the public Autism Brain Imaging Data Exchange (ABIDE) database. Experimental results demonstrate the effectiveness of our method in ASD diagnosis based on multi-site rs-fMRI datasets.

J. Zhang and P. Wan—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaral, D.G., et al.: Autism BrainNet: a network of postmortem brain banks established to facilitate autism research. Handb. Clin. Neurol. 150, 31–39 (2018)

    Article  Google Scholar 

  2. Kana, R.K., et al.: Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys. Life Rev. 8(4), 410–437 (2011)

    Article  Google Scholar 

  3. Maximo, J.O., et al.: The implications of brain connectivity in the neuropsychology of autism. Neuropsychol. Rev. 24(1), 16–31 (2014)

    Article  Google Scholar 

  4. Anderson, J.S., et al.: Functional connectivity magnetic resonance imaging classification of autism. Brain 134(12), 3742–3754 (2011)

    Article  Google Scholar 

  5. Wang, M., et al.: Multi-task exclusive relationship learning for Alzheimer’s disease progression prediction with longitudinal data. Med. Image Anal. 53, 111–122 (2019)

    Article  Google Scholar 

  6. Heinsfeld, A.S., et al.: Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 17, 16–23 (2018)

    Article  Google Scholar 

  7. Button, K.S., et al.: Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14(5), 365–376 (2013)

    Article  Google Scholar 

  8. Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147, 736–745 (2017)

    Article  Google Scholar 

  9. Wang, M., Zhang, D., Huang, J., Shen, D., Liu, M.: Low-rank representation for multi-center autism spectrum disorder identification. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 647–654. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_73

    Chapter  Google Scholar 

  10. Wachinger, C., et al.: Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage 139, 470–479 (2016)

    Article  Google Scholar 

  11. Itani, S., et al.: A multi-level classification framework for multi-site medical data: application to the ADHD-200 collection. Expert Syst. Appl. 91, 36–45 (2018)

    Article  Google Scholar 

  12. Pan, S., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  13. Si, S., et al.: Bregman divergence-based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng. 22(7), 929–942 (2009)

    Article  Google Scholar 

  14. Long, M., et al.: Transfer feature learning with joint distribution adaptation. In: ICCV, pp. 2200–2207. IEEE, Piscataway (2013)

    Google Scholar 

  15. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  16. Xu, R., et al.: Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In: CVPR, pp. 3964–3973. IEEE, Piscataway (2018)

    Google Scholar 

  17. Courty, N., Flamary, R., Tuia, D.: Domain adaptation with regularized optimal transport. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 274–289. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_18

    Chapter  Google Scholar 

  18. Courty, N., et al.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2016)

    Article  Google Scholar 

  19. Chambon, S., et al.: Domain adaptation with optimal transport improves EEG sleep stage classifiers. In: PRNI, pp. 1–4. IEEE, Piscataway (2018)

    Google Scholar 

  20. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  21. Craddock, C., et al.: Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Front Neuroinform. 42 (2013)

    Google Scholar 

  22. Kantorovich, L.V.: On the translocation of masses. J. Math. Sci. 133(4), 1381–1382 (2006)

    Article  MathSciNet  Google Scholar 

  23. Courty, N., et al.: Joint distribution optimal transportation for domain adaptation. In: NeurIPS, pp. 3730–3739. MIT Press, Cambridge (2017)

    Google Scholar 

  24. Zhu, Y., et al.: Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. In: AAAI, pp. 5989–5996. AAAI, Palo Alto (2019)

    Google Scholar 

  25. Li, Z., et al.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  26. Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 467–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_28

    Chapter  Google Scholar 

  27. Ganin, Y., et al.: Unsupervised domain adaptation by backpropagation. In: ICML, pp. 1180–1189. ACM, New York (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 61876082, 61732006, 61861130366), the National Key R&D Program of China (Grant Nos. 2018YFC2001600, 2018YFC2001602, 2018ZX10201002) and the Royal Society-Academy of Medical Sciences Newton Advanced Fellowship (No. NAF\(\backslash \)R1\(\backslash \)180371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wan, P., Zhang, D. (2020). Transport-Based Joint Distribution Alignment for Multi-site Autism Spectrum Disorder Diagnosis Using Resting-State fMRI. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics