Abstract
Registration is widely used in image-guided therapy and image-guided surgery to estimate spatial correspondences between organs of interest between planning and treatment images. However, while high-quality computed tomography (CT) images are often available at planning time, limited angle acquisitions are frequently used during treatment because of radiation concerns or imaging time constraints. This requires algorithms to register CT images based on limited angle acquisitions. We, therefore, formulate a 3D/2D registration approach which infers a 3D deformation based on measured projections and digitally reconstructed radiographs of the CT. Most 3D/2D registration approaches use simple transformation models or require complex mathematical derivations to formulate the underlying optimization problem. Instead, our approach entirely relies on differentiable operations which can be combined with modern computational toolboxes supporting automatic differentiation. This then allows for rapid prototyping, integration with deep neural networks, and to support a variety of transformation models including fluid flow models. We demonstrate our approach for the registration between CT and stationary chest tomosynthesis (sDCT) images and show how it naturally leads to an iterative image reconstruction approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aouadi, S., Sarry, L.: Accurate and precise 2D–3D registration based on x-ray intensity. Comput. Vis. Image Underst. 110(1), 134–151 (2008)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)
Flach, B., Brehm, M., Sawall, S., Kachelrieß, M.: Deformable 3D–2D registration for CT and its application to low dose tomographic fluoroscopy. Phys. Med. Biol. 59(24), 7865 (2014)
Fu, D., Kuduvalli, G.: A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med. Phys. 35(5), 2180–2194 (2008)
Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation, vol. 105. SIAM (2008)
Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 726–733. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_89
Jaffray, D., Kupelian, P., Djemil, T., Macklis, R.M.: Review of image-guided radiation therapy. Expert Rev. Anticancer Ther. 7(1), 89–103 (2007)
Jans, H.S., Syme, A., Rathee, S., Fallone, B.: 3D interfractional patient position verification using 2D–3D registration of orthogonal images. Med. Phys. 33(5), 1420–1439 (2006)
Jonic, S., Thévenaz, P., Unser, M.A.: Multiresolution-based registration of a volume to a set of its projections. In: Medical Imaging 2003: Image Processing, vol. 5032, pp. 1049–1052. International Society for Optics and Photonics (2003)
Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)
Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012)
Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4(1), 375–405 (2002)
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand (2004)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Prümmer, M., Han, J., Hornegger, J.: 2D–3D non-rigid registration using iterative reconstruction. In: Workshop Vision Modeling and Visualization in Erlangen, vol. 1, pp. 187–194 (2005). http://www.vmv2005.uni-erlangen.de
Prümmer, M., Hornegger, J., Pfister, M., Dörfler, A.: Multi-modal 2D–3D non-rigid registration. In: Medical Imaging 2006: Image Processing, vol. 6144, p. 61440X. International Society for Optics and Photonics (2006)
Risser, L., Vialard, F.-X., Wolz, R., Holm, D.D., Rueckert, D.: Simultaneous fine and coarse diffeomorphic registration: application to atrophy measurement in Alzheimer’s disease. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 610–617. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_75
Shan, J., et al.: Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study. Phys. Med. Biol. 60(1), 81 (2014)
Shen, Z., Vialard, F.X., Niethammer, M.: Region-specific diffeomorphic metric mapping. In: Advances in Neural Information Processing Systems, pp. 1096–1106 (2019)
Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 1219–1222. IEEE (2013)
Tomazevic, D., Likar, B., Pernus, F.: 3-D/2-D registration by integrating 2-D information in 3-D. IEEE Trans. Med. Imaging 25(1), 17–27 (2005)
Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97(2), 229–241 (2012)
Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic total variation regularization of displacements in parametric image registration. IEEE Trans. Med. Imaging 36(2), 385–395 (2016)
Wu, G., Inscoe, C., Calliste, J., Lee, Y.Z., Zhou, O., Lu, J.: Adapted fan-beam volume reconstruction for stationary digital breast tomosynthesis. In: Medical Imaging 2015: Physics of Medical Imaging, vol. 9412, p. 94123J. International Society for Optics and Photonics (2015)
Zikic, D., Groher, M., Khamene, A., Navab, N.: Deformable registration of 3D vessel structures to a single projection image. In: Medical Imaging 2008: Image Processing, vol. 6914, p. 691412. International Society for Optics and Photonics (2008)
Acknowledgements
Research reported in this work was supported by the National Institutes of Health (NIH) under award number NIH 1-R01-EB028283-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tian, L. et al. (2020). Fluid Registration Between Lung CT and Stationary Chest Tomosynthesis Images. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-59716-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59715-3
Online ISBN: 978-3-030-59716-0
eBook Packages: Computer ScienceComputer Science (R0)