Skip to main content

Fluid Registration Between Lung CT and Stationary Chest Tomosynthesis Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Registration is widely used in image-guided therapy and image-guided surgery to estimate spatial correspondences between organs of interest between planning and treatment images. However, while high-quality computed tomography (CT) images are often available at planning time, limited angle acquisitions are frequently used during treatment because of radiation concerns or imaging time constraints. This requires algorithms to register CT images based on limited angle acquisitions. We, therefore, formulate a 3D/2D registration approach which infers a 3D deformation based on measured projections and digitally reconstructed radiographs of the CT. Most 3D/2D registration approaches use simple transformation models or require complex mathematical derivations to formulate the underlying optimization problem. Instead, our approach entirely relies on differentiable operations which can be combined with modern computational toolboxes supporting automatic differentiation. This then allows for rapid prototyping, integration with deep neural networks, and to support a variety of transformation models including fluid flow models. We demonstrate our approach for the registration between CT and stationary chest tomosynthesis (sDCT) images and show how it naturally leads to an iterative image reconstruction approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aouadi, S., Sarry, L.: Accurate and precise 2D–3D registration based on x-ray intensity. Comput. Vis. Image Underst. 110(1), 134–151 (2008)

    Article  Google Scholar 

  2. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  3. Flach, B., Brehm, M., Sawall, S., Kachelrieß, M.: Deformable 3D–2D registration for CT and its application to low dose tomographic fluoroscopy. Phys. Med. Biol. 59(24), 7865 (2014)

    Article  Google Scholar 

  4. Fu, D., Kuduvalli, G.: A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med. Phys. 35(5), 2180–2194 (2008)

    Article  Google Scholar 

  5. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation, vol. 105. SIAM (2008)

    Google Scholar 

  6. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 726–733. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_89

    Chapter  Google Scholar 

  7. Jaffray, D., Kupelian, P., Djemil, T., Macklis, R.M.: Review of image-guided radiation therapy. Expert Rev. Anticancer Ther. 7(1), 89–103 (2007)

    Article  Google Scholar 

  8. Jans, H.S., Syme, A., Rathee, S., Fallone, B.: 3D interfractional patient position verification using 2D–3D registration of orthogonal images. Med. Phys. 33(5), 1420–1439 (2006)

    Article  Google Scholar 

  9. Jonic, S., Thévenaz, P., Unser, M.A.: Multiresolution-based registration of a volume to a set of its projections. In: Medical Imaging 2003: Image Processing, vol. 5032, pp. 1049–1052. International Society for Optics and Photonics (2003)

    Google Scholar 

  10. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012)

    Article  Google Scholar 

  12. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4(1), 375–405 (2002)

    Article  Google Scholar 

  13. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand (2004)

    Google Scholar 

  14. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  15. Prümmer, M., Han, J., Hornegger, J.: 2D–3D non-rigid registration using iterative reconstruction. In: Workshop Vision Modeling and Visualization in Erlangen, vol. 1, pp. 187–194 (2005). http://www.vmv2005.uni-erlangen.de

  16. Prümmer, M., Hornegger, J., Pfister, M., Dörfler, A.: Multi-modal 2D–3D non-rigid registration. In: Medical Imaging 2006: Image Processing, vol. 6144, p. 61440X. International Society for Optics and Photonics (2006)

    Google Scholar 

  17. Risser, L., Vialard, F.-X., Wolz, R., Holm, D.D., Rueckert, D.: Simultaneous fine and coarse diffeomorphic registration: application to atrophy measurement in Alzheimer’s disease. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 610–617. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_75

    Chapter  Google Scholar 

  18. Shan, J., et al.: Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study. Phys. Med. Biol. 60(1), 81 (2014)

    Article  Google Scholar 

  19. Shen, Z., Vialard, F.X., Niethammer, M.: Region-specific diffeomorphic metric mapping. In: Advances in Neural Information Processing Systems, pp. 1096–1106 (2019)

    Google Scholar 

  20. Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 1219–1222. IEEE (2013)

    Google Scholar 

  21. Tomazevic, D., Likar, B., Pernus, F.: 3-D/2-D registration by integrating 2-D information in 3-D. IEEE Trans. Med. Imaging 25(1), 17–27 (2005)

    Article  Google Scholar 

  22. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97(2), 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic total variation regularization of displacements in parametric image registration. IEEE Trans. Med. Imaging 36(2), 385–395 (2016)

    Article  Google Scholar 

  24. Wu, G., Inscoe, C., Calliste, J., Lee, Y.Z., Zhou, O., Lu, J.: Adapted fan-beam volume reconstruction for stationary digital breast tomosynthesis. In: Medical Imaging 2015: Physics of Medical Imaging, vol. 9412, p. 94123J. International Society for Optics and Photonics (2015)

    Google Scholar 

  25. Zikic, D., Groher, M., Khamene, A., Navab, N.: Deformable registration of 3D vessel structures to a single projection image. In: Medical Imaging 2008: Image Processing, vol. 6914, p. 691412. International Society for Optics and Photonics (2008)

    Google Scholar 

Download references

Acknowledgements

Research reported in this work was supported by the National Institutes of Health (NIH) under award number NIH 1-R01-EB028283-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, L. et al. (2020). Fluid Registration Between Lung CT and Stationary Chest Tomosynthesis Images. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics