Skip to main content

Symmetric Dilated Convolution for Surgical Gesture Recognition

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

  • 7884 Accesses

Abstract

Automatic surgical gesture recognition is a prerequisite of intra-operative computer assistance and objective surgical skill assessment. Prior works either require additional sensors to collect kinematics data or have limitations on capturing temporal information from long and untrimmed surgical videos. To tackle these challenges, we propose a novel temporal convolutional architecture to automatically detect and segment surgical gestures with corresponding boundaries only using RGB videos. We devise our method with a symmetric dilation structure bridged by a self-attention module to encode and decode the long-term temporal patterns and establish the frame-to-frame relationship accordingly. We validate the effectiveness of our approach on a fundamental robotic suturing task from the JIGSAWS dataset. The experiment results demonstrate the ability of our method on capturing long-term frame dependencies, which largely outperform the state-of-the-art methods on the frame-wise accuracy up to \(\sim \)6 points and the F1@50 score \(\sim \)6 points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, L., Xu, C.: Tricornet: a hybrid temporal convolutional and recurrent network for video action segmentation. arXiv preprint arXiv:1705.07818 (2017)

  2. DiPietro, R., et al.: Recognizing surgical activities with recurrent neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 551–558. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_64

    Chapter  Google Scholar 

  3. Farha, Y.A., Gall, J.: Ms-tcn: multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3575–3584 (2019)

    Google Scholar 

  4. Funke, I., Bodenstedt, S., Oehme, F., von Bechtolsheim, F., Weitz, J., Speidel, S.: Using 3D convolutional neural networks to learn spatiotemporal features for automatic surgical gesture recognition in video. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 467–475. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_52

    Chapter  Google Scholar 

  5. Gao, Y., et al.: Jhu-isi gesture and skill assessment working set (jigsaws): a surgical activity dataset for human motion modeling. In: MICCAI Workshop: M2CAI, vol. 3, p. 3 (2014)

    Google Scholar 

  6. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)

    Google Scholar 

  7. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)

    Google Scholar 

  8. Lea, C., Hager, G.D., Vidal, R.: An improved model for segmentation and recognition of fine-grained activities with application to surgical training tasks. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 1123–1129. IEEE (2015)

    Google Scholar 

  9. Liu, D., Jiang, T.: Deep reinforcement learning for surgical gesture segmentation and classification. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 247–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_29

    Chapter  Google Scholar 

  10. Maier-Hein, L.: Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1(9), 691–696 (2017)

    Article  Google Scholar 

  11. Oord, A.V.d., et al.: Wavenet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  12. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

    Google Scholar 

  13. Singh, B., Marks, T.K., Jones, M., Tuzel, O., Shao, M.: A multi-stream bi-directional recurrent neural network for fine-grained action detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1961–1970 (2016)

    Google Scholar 

  14. Tao, L., Zappella, L., Hager, G.D., Vidal, R.: Surgical gesture segmentation and recognition. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 339–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_43

    Chapter  Google Scholar 

  15. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

  16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  17. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  18. Zhang, S., Guo, S., Huang, W., Scott, M.R., Wang, L.: V4d: 4D convolutional neural networks for video-level representation learning. arXiv preprint arXiv:2002.07442 (2020)

Download references

Acknowledgement

The authors thank Bournemouth University PhD scholarship and Hengdaoruyi Company as well as the Rabin Ezra Scholarship Trust for partly supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 155 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2020). Symmetric Dilated Convolution for Surgical Gesture Recognition. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics