Skip to main content

Multi-organ Segmentation via Co-training Weight-Averaged Models from Few-Organ Datasets

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12264))

  • 9947 Accesses

Abstract

Multi-organ segmentation requires to segment multiple organs of interest from each image. However, it is generally quite difficult to collect full annotations of all the organs on the same images, as some medical centers might only annotate a portion of the organs due to their own clinical practice. In most scenarios, one might obtain annotations of a single or a few organs from one training set, and obtain annotations of the other organs from another set of training images. Existing approaches mostly train and deploy a single model for each subset of organs, which are memory intensive and also time inefficient. In this paper, we propose to co-train weight-averaged models for learning a unified multi-organ segmentation network from few-organ datasets. Specifically, we collaboratively train two networks and let the coupled networks teach each other on un-annotated organs. To alleviate the noisy teaching supervisions between the networks, the weighted-averaged models are adopted to produce more reliable soft labels. In addition, a novel region mask is utilized to selectively apply the consistent constraint on the un-annotated organ regions that require collaborative teaching, which further boosts the performance. Extensive experiments on three publicly available single-organ datasets LiTS [1], KiTS [8], Pancreas [12] and manually-constructed single-organ datasets from MOBA [7] show that our method can better utilize the few-organ datasets and achieves superior performance with less inference computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bilic, P., et al.: The liver tumor segmentation benchmark (LITS). arXiv preprint arXiv:1901.04056 (2019)

  2. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: VoxresNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2018)

    Article  Google Scholar 

  3. Chen, H., Wang, X., Huang, Y., Wu, X., Yu, Y., Wang, L.: Harnessing 2D networks and 3D features for automated pancreas segmentation from volumetric CT images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 339–347. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_38

    Chapter  Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  5. Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019)

    Google Scholar 

  6. Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. arXiv preprint arXiv:2001.01526 (2020)

  7. Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)

    Article  Google Scholar 

  8. Heller, N., et al.: The kits19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)

  9. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via IBN-net. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 464–479 (2018)

    Google Scholar 

  10. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1742–1750 (2015)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  13. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  14. Zhang, H., et al.: Context encoding for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7151–7160 (2018)

    Google Scholar 

  15. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018)

    Google Scholar 

  16. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  17. Zhou, Y., et al.: Prior-aware neural network for partially-supervised multi-organ segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10672–10681 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the General Research Fund through the Research Grants Council of Hong Kong under Grants CUHK14208417, CUHK14239816, CUHK14207319, in part by the Hong Kong Innovation and Technology Support Programme (No. ITS/312/18FX), in part by the National Natural Science Foundation of China (No. 81871508; No. 61773246), in part by the Taishan Scholar Program of Shandong Province of China (No. TSHW201502038), in part by the Major Program of Shandong Province Natural Science Foundation (ZR2019ZD04, No. ZR2018ZB0419).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanjie Zheng or Hongsheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, R., Zheng, Y., Hu, Z., Zhang, S., Li, H. (2020). Multi-organ Segmentation via Co-training Weight-Averaged Models from Few-Organ Datasets. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics