Skip to main content

Calibrated Surrogate Maximization of Dice

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

In the medical imaging community, it is increasingly popular to train machine learning models for segmentation problems with objectives based on the soft-Dice surrogate. While experimental studies have showed good performance with respect to Dice, there have also been reports of some issues related to stability. In parallel with these developments, direct optimization of evaluation metrics has also been studied in the context of binary classification. Recently, in this setting, a quasi-concave, lower-bounded and calibrated surrogate for the \(F_1\)-score has been proposed. In this work, we show how to use this surrogate in the context of segmentation. We then show that it has some better theoretical properties than soft-Dice. Finally, we experimentally compare the new surrogate with soft-Dice on a 3D-segmentation problem and get results indicating that stability is improved. We conclude that the new surrogate, for theoretical and experimental reasons, can be considered a promising alternative to the soft-Dice surrogate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, H., Sugiyama, M.: Calibrated surrogate maximization of linear-fractional utility in binary classification. In: International Conference on Artificial Intelligence and Statistics, pp. 2337–2347 (2020)

    Google Scholar 

  2. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 101(473), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bertels, J., et al.: Optimizing the dice score and Jaccard index for medical image segmentation: theory and practice. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 92–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_11

    Chapter  Google Scholar 

  4. Bertels, J., Robben, D., Vandermeulen, D., Suetens, P.: Optimization with soft dice can lead to a volumetric bias. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 89–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_9

    Chapter  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA - 2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  7. Heller, N., et al.: The Kits19 Challenge Data: 300 Kidney Tumor Cases With Clinical Context, CT Semantic Segmentations, and Surgical Outcomes (2019)

    Google Scholar 

  8. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  9. Isensee, F., Maier-Hein, K.H.: An attempt at beating the 3D U-net. arXiv preprint arXiv:1908.02182 (2019)

  10. Jadon, S., et al.: A comparative study of 2D image segmentation algorithms for traumatic brain lesions using CT data from the ProTECTIII multicenter clinical trial. In: Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications. vol. 11318, p. 11318 0Q. International Society for Optics and Photonics (2020)

    Google Scholar 

  11. Kar, P., Narasimhan, H., Jain, P.: Surrogate functions for maximizing precision at the top. In: International Conference on Machine Learning, pp. 189–198 (2015)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  13. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  14. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern. ) 39(2), 539–550 (2008)

    Google Scholar 

  15. Liu, X.Y., Zhou, Z.H.: The influence of class imbalance on cost-sensitive learning: an empirical study. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 970–974. IEEE (2006)

    Google Scholar 

  16. Mehrtash, A., Wells III, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. arXiv preprint arXiv:1911.13273 (2019)

  17. Menon, A., Narasimhan, H., Agarwal, S., Chawla, S.: On the statistical consistency of algorithms for binary classification under class imbalance. In: International Conference on Machine Learning, pp. 603–611 (2013)

    Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Steinwart, I.: How to compare different loss functions and their risks. Constr. Approximat. 26(2), 225–287 (2007)

    Article  MathSciNet  Google Scholar 

  21. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS - 2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  22. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  23. Zhang, T.: Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Stat. 32, 56–85 (2004)

    Article  MathSciNet  Google Scholar 

  24. Zhang, Y., et al.: Cascaded volumetric convolutional network for kidney tumor segmentation from CT volumes. arXiv preprint arXiv:1910.02235 (2019)

Download references

Acknowledgement

Marcus Nordström, Fredrik Löfman, Henrik Hult and Atsuto Maki were supported by RaySearch Laboratories. Masashi Sugiyama was supported by the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Nordström .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 122 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nordström, M., Bao, H., Löfman, F., Hult, H., Maki, A., Sugiyama, M. (2020). Calibrated Surrogate Maximization of Dice. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics