Skip to main content

Mt-UcGAN: Multi-task Uncertainty-Constrained GAN for Joint Segmentation, Quantification and Uncertainty Estimation of Renal Tumors on CT

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

The segmentation of renal tumor, quantification of tumor indices (i.e., the center point coordinates, diameter, circumference, and cross-sectional area) and uncertainty estimation of segmentation are the key processes for clinical tumor disease diagnosis. However, these tasks have been studied independently so far. Because segmentation and quantification tasks have different optimization types, representing two different tasks as a unified optimization framework is a severe challenge. In this paper, we propose a unified framework (i.e., Mt-UcGAN: multi-task uncertainty-constrained generative adversarial network) for joint segmentation, quantification, and uncertainty estimation of renal tumors on CT. Mt-UcGAN includes a multitasking integrated generator (MtIG) and an uncertainty-constrained discriminator (UcD). MtIG achieves multi-task joint learning by novelly merging skip connections and Monte Carlo sampling. UCD guides the learning of segmentation and quantification networks by innovatively feeding prior information with high uncertainty constraints. Mt-UcGAN effectively corrects tumor prediction errors and improves network performance through continuous adversarial learning and alternate training. Experiments are performed on CT of 113 renal tumor patients. The dice coefficient of Mt-UcGAN is 92.1%, and the \(R^2\) coefficient of tumor circumference is 0.9513. The results show that this method has great potential to be extended to other medical image analysis tasks and clinical application value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehrazin, R., et al.: Impact of tumour morphology on renal function decline after partial nephrectomy. BJU Int. 111(8), E374–E382 (2013)

    Article  Google Scholar 

  2. Greene, F.L., et al.: AJCC Cancer Staging Handbook: TNM Classification of Malignant Tumors. Springer Science & Business Media, New York (2002)

    Google Scholar 

  3. Spaliviero, M., et al.: Interobserver variability of RENAL, PADUA, and centrality index nephrometry score systems. World J. Urol. 33(6), 853–858 (2015)

    Article  Google Scholar 

  4. Kutikov, A., Uzzo, R.G.: The renal nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 182(3), 844–853 (2009)

    Article  Google Scholar 

  5. Ficarra, V., et al.: Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur. Urol. 56(5), 786–793 (2009)

    Article  Google Scholar 

  6. Taha, A., Lo, P., Li, J., Zhao, T.: Kid-Net: convolution networks for kidney vessels segmentation from CT-volumes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 463–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_53

    Chapter  Google Scholar 

  7. Yang, G., et al.: Automatic segmentation of kidney and renal tumor in CT images based on 3d fully convolutional neural network with pyramid pooling module. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3790–3795. IEEE (2018)

    Google Scholar 

  8. Edge, S.B., et al.: AJCC Cancer Staging Manual, vol. 649. Springer, New York (2010)

    Google Scholar 

  9. Afshin, M., Ayed, I.B., Islam, A., Goela, A., Peters, T.M., Li, S.: Global assessment of cardiac function using image statistics in MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 535–543. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_66

    Chapter  Google Scholar 

  10. Zhen, X., Wang, Z., Yu, M., Li, S.: Supervised descriptor learning for multi-output regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1211–1218 (2015)

    Google Scholar 

  11. Zhen, X., Zhang, H., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression. Med. Image Anal. 36, 184–196 (2017)

    Article  Google Scholar 

  12. Wu, H., Bailey, C., Rasoulinejad, P., Li, S.: Automatic landmark estimation for adolescent idiopathic scoliosis assessment using BoostNet. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 127–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_15

    Chapter  Google Scholar 

  13. Sun, H., Zhen, X., Bailey, C., Rasoulinejad, P., Yin, Y., Li, S.: Direct estimation of spinal cobb angles by structured multi-output regression. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 529–540. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_42

    Chapter  Google Scholar 

  14. Zhen, X., Yu, M., Islam, A., Bhaduri, M., Chan, I., Li, S.: Descriptor learning via supervised manifold regularization for multioutput regression. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2035–2047 (2016)

    Google Scholar 

  15. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Google Scholar 

  16. Xu, C., Howey, J., Ohorodnyk, P., Roth, M., Zhang, H., Li, S.: Segmentation and quantification of infarction without contrast agents via spatio temporal generative adversarial learning. Med. Image Anal., 101568 (2019)

    Google Scholar 

  17. Luo, G., et al.: Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification. Med. Image Anal., 101591 (2019)

    Google Scholar 

  18. Ruan, Y., et al.: MB-FSGAN: joint segmentation and quantification of kidney tumor on CT by the multi-branch feature sharing generative adversarial network. Med. Image Anal. (2020)

    Google Scholar 

  19. Jungo, A., Reyes, M.: Assessing reliability and challenges of uncertainty estimations for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_6

    Chapter  Google Scholar 

  20. Raghu, M., et al.: Direct uncertainty prediction for medical second opinions. arXiv preprint arXiv:1807.01771 (2018)

  21. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  22. Xia, K.J., Yin, H.S., Zhang, Y.D.: Deep semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow algorithm. J. Med. Syst. 43(1), 2 (2019)

    Google Scholar 

  23. Yin, K., Liu, C., Bardis, M., Martin, J., Liu, H., Ushinsky, A., Glavis-Bloom, J., Chantaduly, C., Chow, D.S., Houshyar, R., et al.: Deep learning segmentation of kidneys with renal cell carcinoma. J. Clin. Oncol. 37, e16098–e16098 (2019)

    Article  Google Scholar 

  24. Yu, Q., Shi, Y., Sun, J., Gao, Y., Zhu, J., Dai, Y.: Crossbar-Net: a novel convolutional neural network for kidney tumor segmentation in CT images. IEEE Trans. Image Process. 28(8), 4060–4074 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (61971271), the Taishan Scholars Project of Shandong Province (Tsqn20161023) and the Primary Research and Development Plan of Shandong Province (No. 2018GGX101018, No. 2019QYTPY020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengwang Li or Shuo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruan, Y. et al. (2020). Mt-UcGAN: Multi-task Uncertainty-Constrained GAN for Joint Segmentation, Quantification and Uncertainty Estimation of Renal Tumors on CT. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics