Abstract
In this paper, we propose an end-to-end coupled 3D tooth segmentation and dense correspondence network (c-SCN) for annotation of individual teeth and gingiva of clinically-obtained 3D dental models. The proposed model can be stacked on an existing graph convolutional network (GCN) for feature extraction from dental meshes. We devise a branch network for the instance-aware geodesic maps with respect to virtual tooth crown centroids for feature enhancement. The geodesic map encodes the spatial relationship of an individual tooth with the remaining dental model, and is concatenated with the GCN-based vertex-wise feature fields for simultaneous tooth segmentation and labeling. Furthermore, the label probability matrix from the multi-category classifier, indicating individual tooth regions and boundaries, is used to enhance the inference of dense correspondence. By utilizing the smooth semantic correspondence with the preservation of geometric topology, our approach addresses the attribute transfer-based landmark location. The qualitative and quantitative evaluations on the clinically-obtained dental models of orthodontic patients demonstrate that our approach achieves effective tooth annotation and dense correspondence, outperforming the compared state-of-the-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid icp algorithms for surface registration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 377–384. IEEE (1999)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)
Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. (TOG) 25(1), 130–150 (2006)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3d-coded: 3d correspondences by deep deformation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 230–246 (2018)
Guo, K., Zou, D., Chen, X.: 3d mesh labeling via deep convolutional neural networks. ACM Trans. Graph. (TOG) 35(1), 3 (2015)
Jack, D., et al.: Learning free-form deformations for 3D object reconstruction. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 317–333. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_21
Kronfeld, T., Brunner, D., Brunnett, G.: Snake-based segmentation of teeth from virtual dental casts. Comput.-Aided Des. Appl. 7(2), 221–233 (2010)
Kumar, Y., Janardan, R., Larson, B., Moon, J.: Improved segmentation of teeth in dental models. Comput.-Aided Des. Appl. 8(2), 211–224 (2011)
Kurenkov, A., et al.: Deformnet: Free-form deformation network for 3d shape reconstruction from a single image. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 858–866. IEEE (2018)
Li, Z., Ning, X., Wang, Z.: A fast segmentation method for stl teeth model. In: 2007 IEEE/ICME International Conference on Complex Medical Engineering, pp. 163–166. IEEE (2007)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Sorkine, O.: Laplacian mesh processing. In: Eurographics (STARs), pp. 53–70 (2005)
Tian, S., Dai, N., Zhang, B., Yuan, F., Yu, Q., Cheng, X.: Automatic classification and segmentation of teeth on 3d dental model using hierarchical deep learning networks. IEEE Access 7, 84817–84828 (2019)
Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26
Verma, N., Boyer, E., Verbeek, J.: Feastnet: Feature-steered graph convolutions for 3d shape analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2598–2606 (2018)
Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graph. (TOG) 36(4), 72 (2017)
Wang, W., Ceylan, D., Mech, R., Neumann, U.: 3dn: 3d deformation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1038–1046 (2019)
Wu, K., Chen, L., Li, J., Zhou, Y.: Tooth segmentation on dental meshes using morphologic skeleton. Comput. Graph. 38, 199–211 (2014)
Xu, X., Liu, C., Zheng, Y.: 3d tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans. Vis. Comput. Graph. 25(7), 2336–2348 (2018)
Yaqi, M., Zhongke, L.: Computer aided orthodontics treatment by virtual segmentation and adjustment. In: 2010 International Conference on Image Analysis and Signal Processing, pp. 336–339. IEEE (2010)
Yuan, T., Liao, W., Dai, N., Cheng, X., Yu, Q.: Single-tooth modeling for 3d dental model. J. Biomed. Imaging 2010, 9 (2010)
Yumer, M.E., Mitra, N.J.: Learning semantic deformation flows with 3D convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 294–311. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_18
Zanjani, F.G., et al.: Mask-MCNet: Instance segmentation in 3D point cloud of intra-oral scans. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 128–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_15
Zanjani, F.G., Moin, D.A., Verheij, B., Claessen, F., Cherici, T., Tan, T., et al.: Deep learning approach to semantic segmentation in 3d point cloud intra-oral scans of teeth. In: International Conference on Medical Imaging with Deep Learning (2019)
Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3d total solution. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 78–92 (2017)
Acknowledgments
This work was supported by NKTRDP China 2017YFB1002601, NSFC 61876008, 81371192.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, D. et al. (2020). Automatic Tooth Segmentation and Dense Correspondence of 3D Dental Model. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_68
Download citation
DOI: https://doi.org/10.1007/978-3-030-59719-1_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59718-4
Online ISBN: 978-3-030-59719-1
eBook Packages: Computer ScienceComputer Science (R0)