Skip to main content

Microtubule Tracking in Electron Microscopy Volumes

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

Abstract

We present a method for microtubule tracking in electron microscopy volumes. Our method first identifies a sparse set of voxels that likely belong to microtubules. Similar to prior work, we then enumerate potential edges between these voxels, which we represent in a candidate graph. Tracks of microtubules are found by selecting nodes and edges in the candidate graph by solving a constrained optimization problem incorporating biological priors on microtubule structure. For this, we present a novel integer linear programming formulation, which results in speed-ups of three orders of magnitude and an increase of 53% in accuracy compared to prior art (evaluated on three \(1.2\times 4\times 4\,\upmu \)m volumes of Drosophila neural tissue). We also propose a scheme to solve the optimization problem in a block-wise fashion, which allows distributed tracking and is necessary to process very large electron microscopy volumes. Finally, we release a benchmark dataset for microtubule tracking, here used for training, testing and validation, consisting of eight \(30 \times 1000 \times 1000\) voxel blocks (\(1.2\times 4\times 4\,\upmu \)m) of densely annotated microtubules in the CREMI data set (https://github.com/nilsec/micron).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Resolution is around \(4\times 4 \times 40\) nm for ssTEM, and \(8\times 8 \times 8\) nm for FIB-SEM  [20].

  2. 2.

    MICCAI Challenge on Circuit Reconstruction in EM Images, https://cremi.org.

  3. 3.

    We use our ILP formulation, which was necessary to process larger volumes.

  4. 4.

    Orientation estimate used in  [4] (direct communication with authors).

References

  1. Boergens, K.M., et al.: Webknossos: efficient online 3d data annotation for connectomics. Nat. Methods 14(7), 691–694 (2017)

    Google Scholar 

  2. Buhmann, J., et al.: Synaptic partner prediction from point annotations in insect brains. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 309–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_35

    Chapter  Google Scholar 

  3. Buhmann, J., et al.: Automatic detection of synaptic partners in a whole-brain drosophila em dataset. bioRxiv (2019). https://doi.org/10.1101/2019.12.12.874172

  4. Buhmann, J.M., Gerhard, S., Cook, M., Funke, J.: Tracking of microtubules in anisotropic volumes of neural tissue. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016). https://doi.org/10.1109/isbi.2016.7493275

  5. Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural networks with limited training data. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 590–594. IEEE (2017)

    Google Scholar 

  6. Dorkenwald, S., et al.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14(4), 435–442 (2017)

    Article  Google Scholar 

  7. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2018). https://doi.org/10.1109/TPAMI.2018.2835450

  8. Gittes, F., Mickey, B., Nettleton, J., Howard, J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–934 (1993)

    Article  Google Scholar 

  9. Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J., Saalfeld, S.: Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete Drosophila brain. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 317–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_36

    Chapter  Google Scholar 

  10. Huang, G.B., Scheffer, L.K., Plaza, S.M.: Fully-automatic synapse prediction and validation on a large data set. Frontiers Neural Circuits 12, 87 (2018)

    Article  Google Scholar 

  11. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods, 1 (2018)

    Google Scholar 

  12. Kreshuk, A., Funke, J., Cardona, A., Hamprecht, F.A.: Who is talking to whom: synaptic partner detection in anisotropic volumes of insect brain. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 661–668. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_81

    Chapter  Google Scholar 

  13. Lee, K., Lu, R., Luther, K., Seung, H.S.: Learning Dense Voxel Embeddings for 3D Neuron Reconstruction. arXiv e-prints arXiv:1909.09872, September 2019

  14. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the snemi3d connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

  15. Nogales, E.: Structural insights into microtubule function. Annu. Rev. Biochem. 69(1), 277–302 (2000)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Schneider-Mizell, C.M., et al.: Quantitative neuroanatomy for connectomics in drosophila. eLife 5, e12059 (2016)

    Google Scholar 

  18. Sommer, C., Straehle, C.N., Koethe, U., Hamprecht, F.A., et al.: Ilastik: Interactive learning and segmentation toolkit. In: ISBI, vol. 2, p. 8 (2011)

    Google Scholar 

  19. Staffler, B., et al.: Synem, automated synapse detection for connectomics. Elife 6, e26414 (2017)

    Article  Google Scholar 

  20. Takemura, S.y., et al.: Synaptic circuits and their variations within different columns in the visual system of drosophila. Proc. Nat. Acad. Sci. 112(44), 13711–13716 (2015)

    Google Scholar 

  21. Xiao, C., et al.: Automatic mitochondria segmentation for EM data using a 3D supervised convolutional network. Frontiers Neuroanat. 12,  92 (2018). https://doi.org/10.3389/fnana.2018.00092. https://www.frontiersin.org/article/10.3389/fnana.2018.00092

  22. Zheng, Z., et al.: A complete electron microscopy volume of the brain of adult drosophila melanogaster. Cell 174(3), 730–743 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tri Nguyen and Caroline Malin-Mayor for code contribution; Arlo Sheridan for helpful discussions and Albert Cardona for his contagious enthusiasm and support. This work was supported by Howard Hughes Medical Institute and Swiss National Science Foundation (SNF grant 205321L 160133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Eckstein .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 30857 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eckstein, N., Buhmann, J., Cook, M., Funke, J. (2020). Microtubule Tracking in Electron Microscopy Volumes. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics