Skip to main content

A Weakly Supervised Deep Learning Approach for Detecting Malaria and Sickle Cells in Blood Films

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Machine vision analysis of blood films imaged under a brightfield microscope could provide scalable malaria diagnosis solutions in resource constrained endemic urban settings. The major bottleneck in successfully analyzing blood films with deep learning vision techniques is a lack of object-level annotations of disease markers such as parasites or abnormal red blood cells. To overcome this challenge, this work proposes a novel deep learning supervised approach that leverages weak labels readily available from routine clinical microscopy to diagnose malaria in thick blood film microscopy. This approach is based on aggregating the convolutional features of multiple objects present in one hundred high resolution image fields. We show that this method not only achieves expert-level malaria diagnostic accuracy without any hard object-level labels but can also identify individual malaria parasites in digitized thick blood films, which is useful in assessing disease severity and response to treatment. We demonstrate another application scenario where our approach is able to detect sickle cells in thin blood films. We discuss the wider applicability of the approach in automated analysis of thick blood films for the diagnosis of other blood disorders.

P. Manescu and D. Fernandez-Reyes—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code available at https://github.com/UCL/FASt-MAL-MOFF.

  2. 2.

    Implemented slightly different than in the original paper as original code was not available.

References

  1. World Health Organization: World Malaria Report (2018)

    Google Scholar 

  2. Arco, J., Górriz, J., Ramírez, J., Álvarez, I., Puntonet, C.: Digital image analysis for automatic enumeration of malaria parasites using morphological operations. Exp. Syst. Appl. 42, 3041–3047 (2015)

    Article  Google Scholar 

  3. Rosado, L., Da Costa, J., Elias, D., Cardoso, J.: Automated detection of malaria parasites on thick blood smears via mobile devices. Procedia Comput. Sci. 90, 138–144 (2016)

    Article  Google Scholar 

  4. Mehanian, C., et al.: Computer-automated malaria diagnosis and quantitation using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  5. Torres, K., et al.: Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru. Malaria J. 17, 1–11 (2018)

    Article  Google Scholar 

  6. Yang, F., Poostchi, M., Yu, H., et al.: Deep learning for smartphone-based malaria parasite detection in thick blood smears. IEEE J. Biomed. Health Inf. 24(5), 1427–1438 (2019)

    Article  Google Scholar 

  7. Couture, H.D., Marron, J.S., Perou, C.M., Troester, M.A., Niethammer, M.: Multiple instance learning for heterogeneous images: training a CNN for histopathology. In: MICCAI (2018)

    Google Scholar 

  8. Jia, Z., Huang, X., Eric, I., Chang, C., Xu, Y.: Constrained deep weak supervision for histopathology image segmentation. IEEE Trans. Med. Imaging 36(11), 2376–2388 (2017)

    Article  Google Scholar 

  9. Courtiol, P., et al.: Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25(10), 1519–1525 (2019)

    Article  Google Scholar 

  10. Campanella, G., Hanna, M., Geneslaw, L., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019)

    Article  Google Scholar 

  11. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12), i52–i59 (2016)

    Article  Google Scholar 

  12. Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  13. Das, D.K., Mukherjee, R., Chakraborty, C.: Computational microscopic imaging for malaria parasite detection: a systematic review. J. Microsc. 1, 1–19 (2015)

    Article  Google Scholar 

  14. Naik, R.P., Haywood Jr., C.: Sickle cell trait diagnosis: clinical and social implications. Hematology Am. Soc. Hematol. Educ. Program. 2015(1), 160–167 (2015)

    Article  Google Scholar 

  15. Forster, B., Van De Ville, D., Berent, J., Sage, D., Unser, M.: Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microsc. Res. Tech. 65, 33–42 (2004)

    Article  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  17. Deng, J., Dong, W., Socher, R., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  18. Yang, F., Yu, H., et al.: Parasite detection in thick blood smears based on customized faster-RCNN on smartphones. Lister Hill National Center for Biomedical Communications (2019)

    Google Scholar 

  19. Manescu, P., Shaw, M., et al.: Giemsa Stained Thick Blood Films for Clinical Microscopy Malaria Diagnosis with Deep Neural Networks Dataset. University College London (2020). Dataset. https://doi.org/10.5522/04/12173568.v1

  20. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances Neural Information Processing System, pp. 379–387 (2016)

    Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  22. Mundhra, D., Cheluvaraju, B., Rampure, J., Dastidar, T.R.: Analyzing microscopic images of peripheral blood smear using deep learning. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (2017)

    Google Scholar 

  23. Sadafi, A., et al.: Multiclass deep active learning for detecting red blood cell subtypes in brightfield microscopy. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 685–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_76

    Chapter  Google Scholar 

  24. Xu, M., Papageorgiou, D.P., Abidi, S.Z., Dao, M., Zhao, H., Karniadakis, G.E.: A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Comput. Biol. 13(10), e1005746 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petru Manescu or Delmiro Fernandez-Reyes .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1481 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manescu, P. et al. (2020). A Weakly Supervised Deep Learning Approach for Detecting Malaria and Sickle Cells in Blood Films. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics