Skip to main content

BCData: A Large-Scale Dataset and Benchmark for Cell Detection and Counting

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Breast cancer is a main malignant tumor for women and the incidence is trending to ascend. Detecting positive and negative tumor cells in the immunohistochemically stained sections of breast tissue to compute the Ki-67 index is an essential means to determine the degree of malignancy of breast cancer. However, there are scarcely public datasets about cell detection of Ki-67 stained images. In this paper, we introduce a large-scale Breast tumor Cell Dataset (BCData) for cell detection and counting, which contains 1,338 images with 181,074 annotated cells belonging to two categories, i.e., positive and negative tumor cells. (We state that our dataset can only be used for non-commercial research.) Our dataset varies widely in both the distributing density of tumor cells and the Ki-67 index. We conduct several cell detection and counting methods on this dataset to set the first benchmark. We believe that our dataset will facilitate further research in cell detection and counting fields in clustering, overlapping, and variational stained conditions. Our dataset is available at https://sites.google.com/view/bcdataset

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_43

    Chapter  Google Scholar 

  2. Chen, H., Dou, Q., Wang, X., Qin, J., Heng, P.A.: Mitosis detection in breast cancer histology images via deep cascaded networks. In: AAAI (2016)

    Google Scholar 

  3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  4. Dhall, D., et al.: Ki-67 proliferative index predicts progression-free survival of patients with well-differentiated ileal neuroendocrine tumors. Hum. Pathol. 43(4), 489–495 (2012)

    Article  Google Scholar 

  5. Hagos, Y.B., Narayanan, P.L., Akarca, A.U., Marafioti, T., Yuan, Y.: ConCORDe-Net: cell count regularized convolutional neural network for cell detection in multiplex immunohistochemistry images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 667–675. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_74

    Chapter  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Hou, L., et al.: Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pat. Recog. 86, 188–200 (2019)

    Article  Google Scholar 

  8. Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_33

    Chapter  Google Scholar 

  9. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: NeurIPS, pp. 1324–1332 (2010)

    Google Scholar 

  10. Li, C., Wang, X., Liu, W., Latecki, L.J., Wang, B., Huang, J.: Weakly supervised mitosis detection in breast histopathology images using concentric loss. Med. Image Anal. 53, 165–178 (2019)

    Article  Google Scholar 

  11. Li, Y., Zhang, X., Chen, D.: CSRNet: dilated convolutional neural networks for understanding the highly congested scenes. In: CVPR, pp. 1091–1100 (2018)

    Google Scholar 

  12. Ram, S., Rodriguez, J.J.: Size-invariant detection of cell nuclei in microscopy images. IEEE Trans. Med. Imaging 35(7), 1753–1764 (2016)

    Article  Google Scholar 

  13. Rojas-Moraleda, R., et al.: Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework. Med. Image Anal. 38, 90–103 (2017)

    Article  Google Scholar 

  14. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA: A Cancer J. Clin. 69(1), 7–34 (2019)

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  16. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  17. Tofighi, M., Guo, T., Vanamala, J.K., Monga, V.: Prior information guided regularized deep learning for cell nucleus detection. IEEE Trans. Med. Imaging 38, 2047–2058 (2019)

    Article  Google Scholar 

  18. Veta, M., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)

    Article  Google Scholar 

  19. Xie, Y., Xing, F., Kong, X., Su, H., Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 358–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_43

    Chapter  Google Scholar 

  20. Xie, Y., Xing, F., Shi, X., Kong, X., Su, H., Yang, L.: Efficient and robust cell detection: a structured regression approach. Med. Image Anal. 44, 245–254 (2018)

    Article  Google Scholar 

  21. Xu, J., et al.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2015)

    Article  MathSciNet  Google Scholar 

  22. Xue, Y., Bigras, G., Hugh, J., Ray, N.: Training convolutional neural networks and compressed sensing end-to-end for microscopy cell detection. IEEE Trans. Med. Imaging 38, 2632–2641 (2019)

    Article  Google Scholar 

  23. Yellin, F., Haeffele, B.D., Roth, S., Vidal, R.: Multi-cell detection and classification using a generative convolutional model. In: CVPR, pp. 8953–8961 (2018)

    Google Scholar 

  24. Zhang, A., Shen, J., Xiao, Z., Zhu, F., Zhen, X., Cao, X., Shao, L.: Relational attention network for crowd counting. In: ICCV, pp. 6788–6797 (2019)

    Google Scholar 

  25. Zhou, Y., Dou, Q., Chen, H., Qin, J., Heng, P.A.: SFCN-OPI: detection and fine-grained classification of nuclei using sibling FCN with objectness prior interaction. In: AAAI (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Nature Science Foundation of China (No. 62081360152, No. 61972217), Natural Science Foundation of Guangdong Province in China (No. 2019B1515120049, 2020B1111340056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4791 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z. et al. (2020). BCData: A Large-Scale Dataset and Benchmark for Cell Detection and Counting. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics