Skip to main content

Multi-field of View Aggregation and Context Encoding for Single-Stage Nucleus Recognition

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

Abstract

Automated nucleus/cell recognition is a very challenging task, especially for differentiating tumor nuclei from non-tumor nuclei in Ki67 immunohistochemistry (IHC) stained images. Convolutional neural networks and their variants have been recently introduced to identify different types of nuclei and have achieved state-of-the-art performance. However, previous nucleus recognition approaches do not explicitly encode contextual information in the images, which can be very helpful for network representation learning. In this paper, we propose a novel multi-field-of-view context encoding method for single-stage nuclei identification in Ki67 IHC stained images. Specifically, we learn a deep structured regression model that takes multi-field of views of images as input and conducts feature aggregation on the fly for representation learning; then, we design a context encoding module to explicitly explore the multi-field-of-view contextual information and enhance the model’s representation power. In order to further improve nucleus recognition, we also introduce a novel deep regression loss that can emphasize specific channels of the prediction map with category-aware channel suppression. The proposed method can be learned in an end-to-end, pixel-to-pixel manner for single-stage nucleus recognition. We evaluate our method on a large-scale pancreatic neuroendocrine tumor image dataset, and the experiments demonstrate the superior performance of our method in nucleus recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell, S., Zitnick, C.L., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2874–2883 (2016)

    Google Scholar 

  2. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  3. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: International Conference on Learning Representations (ICLR), pp. 1–14 (2016)

    Google Scholar 

  4. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)

    Google Scholar 

  5. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 524–531 (2005)

    Google Scholar 

  6. Graham, S., et al.: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)

    Google Scholar 

  8. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), pp. 1–15 (2015)

    Google Scholar 

  9. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128, 261–318 (2020). https://doi.org/10.1007/s11263-019-01247-4

    Article  Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  11. Nguyen, K., Bredno, J., Knowles, D.A.: Using contextual information to classify nuclei in histology images. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 995–998 (2015)

    Google Scholar 

  12. Qu, H., et al.: Joint segmentation and fine-grained classification of nuclei in histopathology images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI), pp. 900–904 (2019)

    Google Scholar 

  13. Raza, S.E.A., et al.: Deconvolving convolutional neural network for cell detection. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI), pp. 891–894 (2019)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R.J., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imag. 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  16. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  17. Tokunaga, H., Teramoto, Y., Yoshizawa, A., Bise, R.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12589–12598 (2019)

    Google Scholar 

  18. Wang, S., Yao, J., Xu, Z., Huang, J.: Subtype cell detection with an accelerated deep convolution neural network. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 640–648. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_74

    Chapter  Google Scholar 

  19. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting with fully convolutional regression networks. In: The 1st Workshop on Deep Learning in Medical Image Analysis, pp. 1–8 (2015)

    Google Scholar 

  20. Xie, Y., Xing, F., Shi, X., Kong, X., Su, H., Yang, L.: Efficient and robust cell detection: a structured regression approach. Med. Image Anal. 44, 245–254 (2018)

    Article  Google Scholar 

  21. Xing, F., Cornish, T.C., Bennett, T., Ghosh, D., Yang, L.: Pixel-to-pixel learning with weak supervision for single-stage nucleus recognition in Ki67 images. IEEE Trans. Biomed. Eng. 66(11), 3088–3097 (2019)

    Article  Google Scholar 

  22. Zeng, X., et al.: Crafting GBD-Net for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 40(9), 2109–2123 (2018)

    Article  Google Scholar 

  23. Zhang, H., et al.: Context encoding for semantic segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7151–7160 (2018)

    Google Scholar 

  24. Zhang, H., Xue, J., Dana, K.: Deep TEN: texture encoding network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2896–2905 (2017)

    Google Scholar 

  25. Zhang, M., Li, X., Xu, M., Li, Q.: RBC semantic segmentation for sickle cell disease based on deformable U-Net. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 695–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_79

    Chapter  Google Scholar 

  26. Zhou, Y., Dou, Q., Chen, H., Qin, J., Heng, P.A.: SFCN-OPI: detection and fine-grained classification of nuclei using sibling FCN with objectness prior interaction. In: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), pp. 2652–2659 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyong Xing .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3559 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, T., Xu, J., Xing, F. (2020). Multi-field of View Aggregation and Context Encoding for Single-Stage Nucleus Recognition. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics