Skip to main content

Renal Cell Carcinoma Detection and Subtyping with Minimal Point-Based Annotation in Whole-Slide Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

  • 10k Accesses

Abstract

Cancerous region detection and subtyping in whole-slide images (WSIs) are fundamental for renal cell carcinoma (RCC) diagnosis. The main challenge in the development of automated RCC diagnostic systems is the lack of large-scale datasets with precise annotations. In this paper, we propose a framework that employs a semi-supervised learning (SSL) method to accurately detect cancerous regions with a novel annotation method called Minimal Point-Based (Min-Point) annotation. The predicted results are efficiently utilized by a hybrid loss training strategy in a classification model for subtyping. The annotator only needs to mark a few cancerous and non-cancerous points in each WSI. The experiments on three significant subtypes of RCC proved that the performance of the cancerous region detector trained with the Min-Point annotated dataset is comparable to the classifiers trained on the dataset with full cancerous region delineation. In subtyping, the proposed model outperforms the model trained with only whole-slide diagnostic labels by 12% in terms of the testing f1-score. We believe that our “detect then classify” schema combined with the Min-Point annotation would set a standard for developing intelligent systems with similar challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsieh, J.J., et al.: Renal cell carcinoma. Nat. Rev. Dis. Primers 3, 17009 (2017)

    Article  Google Scholar 

  2. Ljungberg, B., et al.: EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 67(5), 913–924 (2015)

    Article  Google Scholar 

  3. Soyer, P., Dufresne, A.-C., Klein, I., Barbagelatta, M., Hervé, J.M., Scherrer, A.: Renal cell carcinoma of clear type: correlation of CT features with tumor size, architectural patterns, and pathologic staging. Eur. Radiol. 7(2), 224–229 (1997). https://doi.org/10.1007/s003300050140

    Article  Google Scholar 

  4. Delahunt, B., Eble, J.N.: Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod. Pathol. Off. J. U. S. Canad. Acad. Patholo. 10(6), 537–544 (1997)

    Google Scholar 

  5. Megumi, Y., Nishimura, K.: Chromophobe cell renal carcinoma. Urol. Int. 61(3), 172–174 (1998)

    Article  Google Scholar 

  6. Fuhrman, S.A., Lasky, L.C., Limas, C.: Prognostic significance of morphologic parameters in renal cell carcinoma. Am. J. Surg. Pathol. 6(7), 655–663 (1982)

    Article  Google Scholar 

  7. Delahunt, B., et al.: The international society of urological pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am. J. Surg. Pathol. 37(10), 1490–1504 (2013)

    Article  Google Scholar 

  8. Golatkar, A., Anand, D., Sethi, A.: Classification of breast cancer histology using deep learning. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 837–844. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_95

    Chapter  Google Scholar 

  9. Kong, B., Sun, S., Wang, X., Song, Q., Zhang, S.: Invasive cancer detection utilizing compressed convolutional neural network and transfer learning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 156–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_18

    Chapter  Google Scholar 

  10. Le, H., Samaras, D., Kurc, T., Gupta, R., Shroyer, K., Saltz, J.: Pancreatic cancer detection in whole slide images using noisy label annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_60

    Chapter  Google Scholar 

  11. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  12. Veta, M., et al.: Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019)

    Article  Google Scholar 

  13. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30, pp. 1195–1204. Curran Associates, Inc. (2017)

    Google Scholar 

  14. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems 29, pp. 1163–1171. Curran Associates, Inc. (2016)

    Google Scholar 

  15. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Advances in Neural Information Processing Systems 28, pp. 3546–3554. Curran Associates, Inc. (2015)

    Google Scholar 

  16. Xu, K., Su, H., Zhu, J., Guan, J.S., Zhang, B.: Neuron segmentation based on CNN with semi-supervised regularization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2016

    Google Scholar 

  17. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  18. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019)

    Article  Google Scholar 

  19. Berthelot, D., et al.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems 32, pp. 5049–5059. Curran Associates, Inc. (2019)

    Google Scholar 

  20. Tabibu, S., Vinod, P., Jawahar, C.: Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  21. Puttapirat, P., et al.: OpenHI: open platform for histopathological image annotation. Int. J. Data Min. Bioinform. 22(4), 328–349 (2019)

    Article  Google Scholar 

  22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  23. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. CoRR abs/1710.09412 (2017). http://arxiv.org/abs/1710.09412

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

Download references

Acknowledgements

This work has been supported by National Key Research and Development Program of China (2018YFC0910404); National Natural Science Foundation of China (61772409); The consulting research project of the Chinese Academy of Engineering (The Online and Offline Mixed Educational Service System for “The Belt and Road” Training in MOOC China); Project of China Knowledge Centre for Engineering Science and Technology; The innovation team from the Ministry of Education (IRT_17R86); and the Innovative Research Group of the National Natural Science Foundation of China (61721002). The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Z., Puttapirat, P., Shi, J., Li, C. (2020). Renal Cell Carcinoma Detection and Subtyping with Minimal Point-Based Annotation in Whole-Slide Images. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics