Skip to main content

TR-GAN: Topology Ranking GAN with Triplet Loss for Retinal Artery/Vein Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Retinal artery/vein (A/V) classification lays the foundation for the quantitative analysis of retinal vessels, which is associated with potential risks of various cardiovascular and cerebral diseases. The topological connection relationship, which has been proved effective in improving the A/V classification performance for the conventional graph based method, has not been exploited by the deep learning based method. In this paper, we propose a Topology Ranking Generative Adversarial Network (TR-GAN) to improve the topology connectivity of the segmented arteries and veins, and further to boost the A/V classification performance. A topology ranking discriminator based on ordinal regression is proposed to rank the topological connectivity level of the ground-truth, the generated A/V mask and the intentionally shuffled mask. The ranking loss is further back-propagated to the generator to generate better connected A/V masks. In addition, a topology preserving module with triplet loss is also proposed to extract the high-level topological features and further to narrow the feature distance between the predicted A/V mask and the ground-truth. The proposed framework effectively increases the topological connectivity of the predicted A/V masks and achieves state-of-the-art A/V classification performance on the publicly available AV-DRIVE dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlBadawi, S., Fraz, M.M.: Arterioles and venules classification in retinal images using fully convolutional deep neural network. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 659–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_75

    Chapter  Google Scholar 

  2. Chew, S.K., Xie, J., Wang, J.J.: Retinal arteriolar diameter and the prevalence and incidence of hypertension: a systematic review and meta-analysis of their association. Curr. Hypertens. Rep. 14(2), 144–151 (2012)

    Article  Google Scholar 

  3. Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 23(3), 1073–1083 (2014)

    Article  MathSciNet  Google Scholar 

  4. Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.: Retinal artery-vein classification via topology estimation. IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015)

    Article  Google Scholar 

  5. Frank, E., Hall, M.: A simple approach to ordinal classification. In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44795-4_13

    Chapter  Google Scholar 

  6. Hu, Q., Abramoff, M.D., Garvin, M.K.: Automated separation of binary overlapping trees in low-contrast color retinal images. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 436–443 (2013)

    Google Scholar 

  7. Ikram, M.K., de Jong, F.J., Vingerling, J.R., Witteman, J.C., Hofman, A., Breteler, M.M., de Jong, P.T.: Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam Study. Investigat. Ophthalmol. Visual Sci. 45(7), 2129–2134 (2004)

    Article  Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  9. Ma, W., Yu, S., Ma, K., Wang, J., Ding, X., Zheng, Y.: Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 769–778. Springer (2019)

    Google Scholar 

  10. Mosinska, A., Marquez-Neila, P., Koziński, M., Fua, P.: Beyond the pixel-wise loss for topology-aware delineation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3136–3145 (2018)

    Google Scholar 

  11. Nguyen, T.T., Wang, J.J., Islam, F.A., Mitchell, P., Tapp, R.J., Zimmet, P.Z., Simpson, R., Shaw, J., Wong, T.Y.: Retinal arteriolar narrowing predicts incidence of diabetes: the Australian diabetes, obesity and lifestyle (AusDiab) study. Diabetes 57(3), 536–539 (2008)

    Article  Google Scholar 

  12. Niemeijer, M., van Ginneken, B., Abràmoff, M.D.: Automatic classification of retinal vessels into arteries and veins. In: Proceedings of SPIE Conference on Medical Image: Computer-Aided Diagnosis. vol. 7260, p. 72601F (2009)

    Google Scholar 

  13. Niemeijer, M., Xu, X., Dumitrescu, A.V., Gupta, P., Van Ginneken, B., Folk, J.C., Abramoff, M.D.: Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans. Med. Imaging 30(11), 1941–1950 (2011)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 234–241. Springer (2015)

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  16. Srinidhi, C.L., Aparna, P., Rajan, J.: Automated method for retinal artery/vein separation via graph search metaheuristic approach. IEEE Trans. Image Process. 28(6), 2705–2718 (2019)

    Article  MathSciNet  Google Scholar 

  17. Wong, T.Y., Hubbard, L., Klein, R., Marino, E., Kronmal, R., Sharrett, A., Siscovick, D., Burke, G., Tielsch, J.: Retinal microvascular abnormalities and blood pressure in older people: the Cardiovascular Health Study. Br. J. Ophthalmol. 86(9), 1007–1013 (2002)

    Article  Google Scholar 

  18. Xu, X., Ding, W., Abràmoff, M.D., Cao, R.: An improved arteriovenous classification method for the early diagnostics of various diseases in retinal image. Comput. Methods Programs Biomed. 141, 3–9 (2017)

    Google Scholar 

  19. Xu, X., Wang, R., Lv, P., Gao, B., Li, C., Tian, Z., Tan, T., Xu, F.: Simultaneous arteriole and venule segmentation with domain-specific loss function on a new public database. Biomed. Opt. Express 9(7), 3153–3166 (2018)

    Article  Google Scholar 

  20. Zhao, Y., Xie, J., Su, P., Zheng, Y., Liu, Y., Cheng, J., Liu, J.: Retinal artery and vein classification via dominant sets clustering-based vascular topology estimation. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 56–64 (2018)

    Google Scholar 

  21. Zhao, Y., Xie, J., Zhang, H., Zheng, Y., Zhao, Y., Qi, H., Zhao, Y., Su, P., Liu, J., Liu, Y.: Retinal vascular network topology reconstruction and artery/vein classification via dominant set clustering. IEEE Trans. Med. Imaging 39, 341–356 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the Key Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), National Key Research and Development Project (No. 2018YFC2000702), National Natural Science Foundation of China (No. 91959108), and Science and Technology Program of Shenzhen, China (No. ZDSYS201802021814180)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W. et al. (2020). TR-GAN: Topology Ranking GAN with Triplet Loss for Retinal Artery/Vein Classification. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics