Skip to main content

Grading Loss: A Fracture Grade-Based Metric Loss for Vertebral Fracture Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Osteoporotic vertebral fractures have a severe impact on patients’ overall well-being but are severely under-diagnosed. These fractures present themselves at various levels of severity measured using the Genant’s grading scale. Insufficient annotated datasets, severe data-imbalance, and minor difference in appearances between fractured and healthy vertebrae make naive classification approaches result in poor discriminatory performance. Addressing this, we propose a representation learning-inspired approach for automated vertebral fracture detection, aimed at learning latent representations efficient for fracture detection. Building on state-of-art metric losses, we present a novel Grading Loss for learning representations that respect Genant’s fracture grading scheme. On a publicly available spine dataset, the proposed loss function achieves a fracture detection F1 score of 81.5%, a 10% increase over a naive classification baseline.

M. Husseini and A. Sekuboyina—Shared first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Genant, H.K., et al.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993)

    Article  Google Scholar 

  2. Carberry, G., et al.: Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology 268(1), 120–126 (2013)

    Article  Google Scholar 

  3. Cauley, J., et al.: Risk of mortality following clinical fractures. Osteoporos. Int. 11(7), 556–561 (2000)

    Article  Google Scholar 

  4. Loeffler, M., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2(4), e190138 (2020)

    Article  Google Scholar 

  5. Sekuboyina, A. et al.: VerSe: A Vertebrae Labelling and Segmentation Benchmark. arXiv eprint: 2001.09193. arXiv preprint arXiv:2001.09193 (2020)

  6. Sekuboyina, A., et al.: Labelling vertebrae with 2D reformations of multidetector CT images: an adversarial approach for incorporating prior knowledge of spine anatomy. Radiol. Artif. Intell. 2(2), e190074 (2020). https://doi.org/10.1148/ryai.2020190074

    Article  Google Scholar 

  7. Valentinitsch, A.: Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos. Int. 30(6), 1275–1285 (2019). https://doi.org/10.1007/s00198-019-04910-1

    Article  Google Scholar 

  8. Bar, A., et al.: Compression fractures detection on CT. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 1013440. International Society for Optics and Photonics (2017)

    Google Scholar 

  9. Tomita, N., et al.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 98, 8–15 (2018)

    Article  Google Scholar 

  10. Nicolaes, J. et al.: Detection of vertebral fractures in CT using 3D Convolutional Neural Networks. arXiv preprint arXiv:1911.01816 (2019)

  11. Chen, W., et al.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)

    Google Scholar 

  12. Husseini, M., Sekuboyina, A., Bayat, A., Menze, B.H., Loeffler, M., Kirschke, J.S.: Conditioned variational auto-encoder for detecting osteoporotic vertebral fractures. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 29–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_3

    Chapter  Google Scholar 

  13. Raghu, M., et al.: Transfusion: understanding transfer learning for medical imaging. Adv. Neural Inf. Process. Syst. 10(10007/1234567890), 3342–3352 (2019)

    Google Scholar 

  14. Schroff, F., et al.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  15. Hadsell, R., et al.: Dimensionality reduction by learning an invariant mapping. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1735–1742 (2006)

    Google Scholar 

  16. Finn, C., et al.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1126–1135 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by DIFUTURE, funded by the German Federal Ministry of Education and Research under (01ZZ1603[A-D]) and (01ZZ1804[A-I]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Husseini .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 114 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Husseini, M., Sekuboyina, A., Loeffler, M., Navarro, F., Menze, B.H., Kirschke, J.S. (2020). Grading Loss: A Fracture Grade-Based Metric Loss for Vertebral Fracture Detection. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics