Abstract
The analysis of anatomy that undergoes rapid changes, such as neuroimaging of the early developing brain, greatly benefits from spatio-temporal statistical analysis methods to represent population variations but also subject-wise characteristics over time. Methods for spatio-temporal modeling and for analysis of longitudinal shape and image data have been presented before, but, to our knowledge, not for diffusion weighted MR images (DW-MRI) fitted with higher-order diffusion models. To bridge the gap between rapidly evolving DW-MRI methods in longitudinal studies and the existing frameworks, which are often limited to the analysis of derived measures like fractional anisotropy (FA), we propose a new framework to estimate a population trajectory of longitudinal diffusion orientation distribution functions (dODFs) along with subject-specific changes by using hierarchical geodesic modeling. The dODF is an angular profile of the diffusion probability density function derived from high angular resolution diffusion imaging (HARDI) and we consider the dODF with the square-root representation to lie on the unit sphere in a Hilbert space, which is a well-known Riemannian manifold, to respect the nonlinear characteristics of dODFs. The proposed method is validated on synthetic longitudinal dODF data and tested on a longitudinal set of 60 HARDI images from 25 healthy infants to characterize dODF changes associated with early brain development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allassonnière, S., Chevallier, J., Oudard, S.: Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. In: Advances in Neural Information Processing Systems, pp. 1152–1160 (2017)
Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9271–9280 (2018)
Chen, Y., et al.: Longitudinal regression analysis of spatial-temporal growth patterns of geometrical diffusion measures in early postnatal brain development with diffusion tensor imaging. Neuroimage 58(4), 993–1005 (2011)
Cohen-Adad, J., Descoteaux, M., Wald, L.L.: Quality assessment of high angular resolution diffusion imaging data using bootstrap on q-ball reconstruction. J. Magnetic Resonance Imag. 33(5), 1194–1208 (2011)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 58(3), 497–510 (2007)
Du, J., Goh, A., Kushnarev, S., Qiu, A.: Geodesic regression on orientation distribution functions with its application to an aging study. NeuroImage 87, 416–426 (2014)
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P.S., Hertz-Pannier, L.: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014)
Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vis. 103(1), 22–59 (2013)
Fitzmaurice, G.M., Laird, N.M., Ware, J.H.: Applied longitudinal analysis, vol. 998. John Wiley & Sons (2012)
Fletcher, P.T.: Geodesic regression and its application to shape analysis. In: Innovations for Shape Analysis, pp. 35–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34141-0_2
Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)
Gerig, G., Fishbaugh, J., Sadeghi, N.: Longitudinal modeling of appearance and shape and its potential for clinical use. Med. Image Anal. 33, 114–121 (2016)
Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: A nonparametric riemannian framework for processing high angular resolution diffusion images (hardi). In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2496–2503. IEEE (2009)
Guizard, N., Fonov, V.S., García-Lorenzo, D., Nakamura, K., Aubert-Broche, B., Collins, D.L.: Spatio-temporal regularization for longitudinal registration to subject-specific 3d template. PLoS ONE 10(8), 10 (2015)
Hong, S., Fishbaugh, J., Wolff, J.J., Styner, M.A., Gerig, G.: Hierarchical multi-geodesic model for longitudinal analysis of temporal trajectories of anatomical shape and covariates. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 57–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_7
Kim, H., Styner, M., Piven, J., Gerig, G.: A framework to construct a longitudinal dw-mri infant atlas based on mixed effects modeling of dodf coefficients. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2019)
Kim, H.J., Adluru, N., Suri, H., Vemuri, B.C., Johnson, S.C., Singh, V.: Riemannian nonlinear mixed effects models: analyzing longitudinal deformations in neuroimaging. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2540–2549 (2017)
Kim, J., Chen, G., Lin, W., Yap, P.-T., Shen, D.: Graph-constrained sparse construction of longitudinal diffusion-weighted infant atlases. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 49–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_6
Pietsch, M., et al.: A framework for multi-component analysis of diffusion mri data over the neonatal period. NeuroImage 186, 321–337 (2019)
Reynolds, J.E., Grohs, M.N., Dewey, D., Lebel, C.: Global and regional white matter development in early childhood. Neuroimage 196, 49–58 (2019)
Rutherford, M.A.: MRI of the Neonatal Brain. Elsevier Health Sciences (2002)
Sadeghi, N., Prastawa, M., Fletcher, P.T., Wolff, J., Gilmore, J.H., Gerig, G.: Regional characterization of longitudinal dt-mri to study white matter maturation of the early developing brain. Neuroimage 68, 236–247 (2013)
Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. J. Mach. Learn. Res. 18(1), 4840–4872 (2017)
Serag, A., et al.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59(3), 2255–2265 (2012)
Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. Int. J. Comput. Vis. 117(1), 70–92 (2016)
Srivastava, A., Jermyn, I., Joshi, S.: Riemannian analysis of probability density functions with applications in vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Van Hecke, W., Emsell, L., Sunaert, S.: Diffusion Tensor Imaging: A Practical Handbook, Springer, New York (2015). https://doi.org/10.1007/978-1-4939-3118-7
Zhang, M., Fletcher, T.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems, pp. 1178–1186 (2013)
Zhang, Y., Shi, F., Wu, G., Wang, L., Yap, P.T., Shen, D.: Consistent spatial-temporal longitudinal atlas construction for developing infant brains. IEEE Trans. Med. Imag. 35(12), 2568–2577 (2016)
Acknowledgements
This work was supported by the NIH grants R01-HD055741-12, 1R01HD089390-01A1, 1R01DA038215-01A1 and 1R01HD088125-01A1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Conflict of Interest Statement
The authors declare that there are no conflicts or commercial interest related to this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 6718 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, H., Hong, S., Styner, M., Piven, J., Botteron, K., Gerig, G. (2020). Hierarchical Geodesic Modeling on the Diffusion Orientation Distribution Function for Longitudinal DW-MRI Analysis. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-59728-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59727-6
Online ISBN: 978-3-030-59728-3
eBook Packages: Computer ScienceComputer Science (R0)