Skip to main content

Hierarchical Geodesic Modeling on the Diffusion Orientation Distribution Function for Longitudinal DW-MRI Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

  • 7971 Accesses

Abstract

The analysis of anatomy that undergoes rapid changes, such as neuroimaging of the early developing brain, greatly benefits from spatio-temporal statistical analysis methods to represent population variations but also subject-wise characteristics over time. Methods for spatio-temporal modeling and for analysis of longitudinal shape and image data have been presented before, but, to our knowledge, not for diffusion weighted MR images (DW-MRI) fitted with higher-order diffusion models. To bridge the gap between rapidly evolving DW-MRI methods in longitudinal studies and the existing frameworks, which are often limited to the analysis of derived measures like fractional anisotropy (FA), we propose a new framework to estimate a population trajectory of longitudinal diffusion orientation distribution functions (dODFs) along with subject-specific changes by using hierarchical geodesic modeling. The dODF is an angular profile of the diffusion probability density function derived from high angular resolution diffusion imaging (HARDI) and we consider the dODF with the square-root representation to lie on the unit sphere in a Hilbert space, which is a well-known Riemannian manifold, to respect the nonlinear characteristics of dODFs. The proposed method is validated on synthetic longitudinal dODF data and tested on a longitudinal set of 60 HARDI images from 25 healthy infants to characterize dODF changes associated with early brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allassonnière, S., Chevallier, J., Oudard, S.: Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. In: Advances in Neural Information Processing Systems, pp. 1152–1160 (2017)

    Google Scholar 

  2. Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9271–9280 (2018)

    Google Scholar 

  3. Chen, Y., et al.: Longitudinal regression analysis of spatial-temporal growth patterns of geometrical diffusion measures in early postnatal brain development with diffusion tensor imaging. Neuroimage 58(4), 993–1005 (2011)

    Article  Google Scholar 

  4. Cohen-Adad, J., Descoteaux, M., Wald, L.L.: Quality assessment of high angular resolution diffusion imaging data using bootstrap on q-ball reconstruction. J. Magnetic Resonance Imag. 33(5), 1194–1208 (2011)

    Article  Google Scholar 

  5. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance Med. Official J. Int. Soc. Magnetic Resonance Med. 58(3), 497–510 (2007)

    Article  Google Scholar 

  6. Du, J., Goh, A., Kushnarev, S., Qiu, A.: Geodesic regression on orientation distribution functions with its application to an aging study. NeuroImage 87, 416–426 (2014)

    Article  Google Scholar 

  7. Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P.S., Hertz-Pannier, L.: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014)

    Article  Google Scholar 

  8. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. Int. J. Comput. Vis. 103(1), 22–59 (2013)

    Article  MathSciNet  Google Scholar 

  9. Fitzmaurice, G.M., Laird, N.M., Ware, J.H.: Applied longitudinal analysis, vol. 998. John Wiley & Sons (2012)

    Google Scholar 

  10. Fletcher, P.T.: Geodesic regression and its application to shape analysis. In: Innovations for Shape Analysis, pp. 35–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34141-0_2

  11. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)

    Article  Google Scholar 

  12. Gerig, G., Fishbaugh, J., Sadeghi, N.: Longitudinal modeling of appearance and shape and its potential for clinical use. Med. Image Anal. 33, 114–121 (2016)

    Article  Google Scholar 

  13. Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: A nonparametric riemannian framework for processing high angular resolution diffusion images (hardi). In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2496–2503. IEEE (2009)

    Google Scholar 

  14. Guizard, N., Fonov, V.S., García-Lorenzo, D., Nakamura, K., Aubert-Broche, B., Collins, D.L.: Spatio-temporal regularization for longitudinal registration to subject-specific 3d template. PLoS ONE 10(8), 10 (2015)

    Google Scholar 

  15. Hong, S., Fishbaugh, J., Wolff, J.J., Styner, M.A., Gerig, G.: Hierarchical multi-geodesic model for longitudinal analysis of temporal trajectories of anatomical shape and covariates. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 57–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_7

    Chapter  Google Scholar 

  16. Kim, H., Styner, M., Piven, J., Gerig, G.: A framework to construct a longitudinal dw-mri infant atlas based on mixed effects modeling of dodf coefficients. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2019)

    Google Scholar 

  17. Kim, H.J., Adluru, N., Suri, H., Vemuri, B.C., Johnson, S.C., Singh, V.: Riemannian nonlinear mixed effects models: analyzing longitudinal deformations in neuroimaging. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2540–2549 (2017)

    Google Scholar 

  18. Kim, J., Chen, G., Lin, W., Yap, P.-T., Shen, D.: Graph-constrained sparse construction of longitudinal diffusion-weighted infant atlases. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 49–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_6

    Chapter  Google Scholar 

  19. Pietsch, M., et al.: A framework for multi-component analysis of diffusion mri data over the neonatal period. NeuroImage 186, 321–337 (2019)

    Article  Google Scholar 

  20. Reynolds, J.E., Grohs, M.N., Dewey, D., Lebel, C.: Global and regional white matter development in early childhood. Neuroimage 196, 49–58 (2019)

    Article  Google Scholar 

  21. Rutherford, M.A.: MRI of the Neonatal Brain. Elsevier Health Sciences (2002)

    Google Scholar 

  22. Sadeghi, N., Prastawa, M., Fletcher, P.T., Wolff, J., Gilmore, J.H., Gerig, G.: Regional characterization of longitudinal dt-mri to study white matter maturation of the early developing brain. Neuroimage 68, 236–247 (2013)

    Article  Google Scholar 

  23. Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: A bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. J. Mach. Learn. Res. 18(1), 4840–4872 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Serag, A., et al.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59(3), 2255–2265 (2012)

    Article  Google Scholar 

  25. Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. Int. J. Comput. Vis. 117(1), 70–92 (2016)

    Article  MathSciNet  Google Scholar 

  26. Srivastava, A., Jermyn, I., Joshi, S.: Riemannian analysis of probability density functions with applications in vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  27. Van Hecke, W., Emsell, L., Sunaert, S.: Diffusion Tensor Imaging: A Practical Handbook, Springer, New York (2015). https://doi.org/10.1007/978-1-4939-3118-7

  28. Zhang, M., Fletcher, T.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems, pp. 1178–1186 (2013)

    Google Scholar 

  29. Zhang, Y., Shi, F., Wu, G., Wang, L., Yap, P.T., Shen, D.: Consistent spatial-temporal longitudinal atlas construction for developing infant brains. IEEE Trans. Med. Imag. 35(12), 2568–2577 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants R01-HD055741-12, 1R01HD089390-01A1, 1R01DA038215-01A1 and 1R01HD088125-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heejong Kim .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest Statement

The authors declare that there are no conflicts or commercial interest related to this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 147 KB)

Supplementary material 2 (mp4 6718 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, H., Hong, S., Styner, M., Piven, J., Botteron, K., Gerig, G. (2020). Hierarchical Geodesic Modeling on the Diffusion Orientation Distribution Function for Longitudinal DW-MRI Analysis. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics