Skip to main content

Parkinson’s Disease Detection from fMRI-Derived Brainstem Regional Functional Connectivity Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Parkinson’s disease is the second most prevalent neurodegenerative disorder after Alzheimer’s disease. The brainstem, despite its early and crucial involvement in Parkinson’s disease, is largely unexplored in the domain of functional medical imaging. Here we propose a data-driven, connectivity-pattern based framework to extract functional sub-regions within the brainstem and devise a machine learning based tool that can discriminate Parkinson’s disease from healthy participants. We first propose a novel framework to generate a group model of brainstem functional sub-regions by optimizing a community quality function, and generate a brainstem regional network. We then extract graph theoretic features from this brainstem regional network and, after employing an SVM classifier, achieve a sensitivity of disease detection of 94% – comparable to approaches that normally require whole-brain analysis. To the best of our knowledge, this is the first study that employs brainstem functional sub-regions for Parkinson’s disease detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bajaj, N.P., Gontu, V., Birchall, J., Patterson, J., Grosset, D.G., Lees, A.J.: Accuracy of clinical diagnosis in tremulous parkinsonian patients: a blinded video study. J. Neurol. Neurosurg. Psychiatry 81(11), 1223–1228 (2010)

    Article  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bianciardi, M., Toschi, N., Edlow, B.L., Eichner, C., Setsompop, K., et al.: Toward an in vivo neuroimaging template of human brainstem nuclei of the ascending arousal, autonomic, and motor systems. Brain Connect. 5(10), 597–607 (2015)

    Article  Google Scholar 

  4. Bianciardi, M., et al.: In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI. Magn. Reson. Mater. Phys. Biol. Med. 29(3), 451–462 (2016). https://doi.org/10.1007/s10334-016-0546-3

    Article  Google Scholar 

  5. Braak, H., Del Tredici, K., Rüb, U., De Vos, R.A., Steur, E.N.J., Braak, E.: Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24(2), 197–211 (2003)

    Article  Google Scholar 

  6. Cai, J., Liu, A., Mi, T., Garg, S., Trappe, W., et al.: Dynamic graph theoretical analysis of functional connectivity in Parkinson’s disease: the importance of Fiedler Value. IEEE J. Biomed. Health Inf. 23(4), 1720–1729 (2019)

    Article  Google Scholar 

  7. Chen, Y., Yang, W., Long, J., Zhang, Y., Feng, J., et al.: Discriminative analysis of Parkinson’s disease based on whole-brain functional connectivity. PLOS ONE 10(4), e0124153 (2015)

    Article  Google Scholar 

  8. Del Tredici, K., Rüb, U., De Vos, R.A., Bohl, J.R., Braak, H.: Where does Parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61(5), 413–426 (2002)

    Article  Google Scholar 

  9. Engels, G., Vlaar, A., McCoy, B., Scherder, E., Douw, L.: Dynamic functional connectivity and symptoms of Parkinson’s disease: a resting-state fMRI study. Front. Aging Neurosci. 10, 388 (2018)

    Article  Google Scholar 

  10. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  11. Goetz, C.G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G.T., et al.: Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov. Disord. 19(9), 1020–1028 (2004)

    Article  Google Scholar 

  12. Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., et al.: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15), 2129–2170 (2008)

    Article  Google Scholar 

  13. González-Villà, S., Oliver, A., Valverde, S., Wang, L., Zwiggelaar, R., Lladó, X.: A review on brain structures segmentation in magnetic resonance imaging. Artif. Intell. Med. 73, 45–69 (2016)

    Article  Google Scholar 

  14. Göttlich, M., Münte, T.F., Heldmann, M., Kasten, M., Hagenah, J., Krämer, U.M.: Altered resting state brain networks in Parkinson’s disease. PLOS ONE 8(10), e77336 (2013)

    Article  Google Scholar 

  15. Grinberg, L.T., Rueb, U., di Lorenzo Alho, A.T., Heinsen, H.: Brainstem pathology and non-motor symptoms in PD. J. Neurol. Sci. 289(1–2), 81–88 (2010)

    Article  Google Scholar 

  16. Haq, N.F., Moradi, M., Wang, Z.J.: Community structure detection from networks with weighted modularity. Pattern Recogn. Lett. 122, 14–22 (2019)

    Article  Google Scholar 

  17. Iglesias, J.E., Van Leemput, K., Bhatt, P., Casillas, C., et al.: Bayesian segmentation of brainstem structures in MRI. NeuroImage 113, 184–195 (2015)

    Article  Google Scholar 

  18. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008)

    Article  Google Scholar 

  19. Lehéricy, S., Sharman, M.A., Santos, C.L.D., Paquin, R., Gallea, C.: Magnetic resonance imaging of the substantia nigra in Parkinson’s disease. Mov. Disord. 27(7), 822–830 (2012)

    Article  Google Scholar 

  20. Li, J., Wang, Z.J.: Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. J. Mach. Learn. Res. 10, 475–514 (2009)

    Google Scholar 

  21. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  Google Scholar 

  22. Meara, J., Bhowmick, B.K., Hobson, P.: Accuracy of diagnosis in patients with presumed Parkinson’s disease. Age Ageing 28(2), 99–102 (1999)

    Article  Google Scholar 

  23. Pyatigorskaya, N., Gallea, C., Garcia-Lorenzo, D., Vidailhet, M., Lehericy, S.: A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther. Adv. Neurol. Disord. 7(4), 206–220 (2014)

    Article  Google Scholar 

  24. Redner, S.: How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B-Condens. Matter Complex Syst. 4(2), 131–134 (1998)

    Article  Google Scholar 

  25. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  26. Sander, L., Pezold, S., Andermatt, S., Amann, M., Meier, D., et al.: Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases. Hum. Brain Mapp. 40(14), 4091–4104 (2019)

    Article  Google Scholar 

  27. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Szewczyk-Krolikowski, K., Menke, R.A., Rolinski, M., Duff, E., Salimi-Khorshidi, G., et al.: Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology 83(3), 208–214 (2014)

    Article  Google Scholar 

  30. Tahmasian, M., Bettray, L.M., van Eimeren, T., Drzezga, A., Timmermann, L., et al.: A systematic review on the applications of resting-state fMRI in Parkinson’s disease: does dopamine replacement therapy play a role? Cortex 73, 80–105 (2015)

    Article  Google Scholar 

  31. Willis, A.W.: Parkinson disease in the elderly adult. Mo. Med. 110(5), 406 (2013)

    Google Scholar 

  32. Yu, T.: A robust strategy for cleaning motion artifacts in resting state fMRI (2019). https://doi.org/10.14288/1.0379472

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandinee Fariah Haq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haq, N.F., Cai, J., Yu, T., McKeown, M.J., Wang, Z.J. (2020). Parkinson’s Disease Detection from fMRI-Derived Brainstem Regional Functional Connectivity Networks. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics