Abstract
Behavioral changes are the earliest signs of a mental disorder, but arguably, the dynamics of brain function gets affected even earlier. Subsequently, spatio-temporal structure of disorder-specific dynamics is crucial for early diagnosis and understanding the disorder mechanism. A common way of learning discriminatory features relies on training a classifier and evaluating feature importance. Classical classifiers, based on handcrafted features are quite powerful, but suffer the curse of dimensionality when applied to large input dimensions of spatio-temporal data. Deep learning algorithms could handle the problem and a model introspection could highlight discriminatory spatio-temporal regions but need way more samples to train. In this paper we present a novel self supervised training schema which reinforces whole sequence mutual information local to context (whole MILC). We pre-train the whole MILC model on unlabeled and unrelated healthy control data. We test our model on three different disorders (i) Schizophrenia (ii) Autism and (iii) Alzheimers and four different studies. Our algorithm outperforms existing self-supervised pre-training methods and provides competitive classification results to classical machine learning algorithms. Importantly, whole MILC enables attribution of subject diagnosis to specific spatio-temporal regions in the fMRI signal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Human silhouettes are by Natasha Sinegina for Creazilla.com without modifications, https://creativecommons.org/licenses/by/4.0/.
- 2.
These data were downloaded from Function BIRN Data Repository, Project Accession Number 2007-BDR-6UHZ1.
- 3.
http://fcon_1000.projects.nitrc.org/indi/abide/.
- 4.
References
Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.A., Hjelm, R.D.: Unsupervised state representation learning in Atari. arXiv preprint arXiv:1906.08226 (2019)
Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)
Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.: A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14(3), 140–151 (2001)
Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T.: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2), 262–274 (2014)
Çetin, M.S., et al.: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. Neuroimage 97, 117–126 (2014)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659 (2014)
Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C.: Unsupervised learning of functional network dynamics in resting state fMRI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 426–437. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38868-2_36
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)
Fedorov, A., et al.: Prediction of progression to Alzheimers disease with deep InfoMax. arXiv preprint arXiv:1904.10931 (2019)
Fu, Z., et al.: Altered static and dynamic functional network connectivity in Alzheimer’s disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum. Brain Mapp. (2019)
Goldberg, D.P., Huxley, P.: Common Mental Disorders: A Bio-social Model. Tavistock/Routledge, London (1992)
Hénaff, O.J., Razavi, A., Doersch, C., Eslami, S., Oord, A.V.D.: Data-efficient image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272 (2019)
Hjelm, R.D., Calhoun, V.D., Salakhutdinov, R., Allen, E.A., Adali, T., Plis, S.M.: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage 96, 245–260 (2014)
Hjelm, R.D., Damaraju, E., Cho, K., Laufs, H., Plis, S.M., Calhoun, V.D.: Spatio-temporal dynamics of intrinsic networks in functional magnetic imaging data using recurrent neural networks. Front. Neurosci. 12, 600 (2018)
Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)
Keator, D.B., et al.: The function biomedical informatics research network data repository. Neuroimage 124, 1074–1079 (2016)
Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A.: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging and Behavior 10(3), 799–817 (2016). https://doi.org/10.1007/s11682-015-9448-7
Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.: Detecting abnormalities in resting-state dynamics: an unsupervised learning approach. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 301–309. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_35
Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fMRI analysis. Magnet. Reson. Imaging (2019)
Li, H., Parikh, N.A., He, L.: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front. Neurosci. 12, 491 (2018). https://doi.org/10.3389/fnins.2018.00491, https://www.frontiersin.org/article/10.3389/fnins.2018.00491
Lugosch, L., Ravanelli, M., Ignoto, P., Tomar, V.S., Bengio, Y.: Speech model pre-training for end-to-end spoken language understanding. arXiv preprint arXiv:1904.03670 (2019)
Lütkepohl, H.: New Introduction to Multiple Time Series analysis. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-27752-1
Mahmood, U., Rahman, M.M., Fedorov, A., Fu, Z., Plis, S.: Transfer learning of fMRI dynamics. arXiv preprint arXiv:1911.06813 (2019)
Mensch, A., Mairal, J., Bzdok, D., Thirion, B., Varoquaux, G.: Learning neural representations of human cognition across many fMRI studies. In: Advances in Neural Information Processing Systems, pp. 5883–5893 (2017)
Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Plis, S.M., et al.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 229 (2014)
Ravanelli, M., Bengio, Y.: Learning speaker representations with mutual information. arXiv preprint arXiv:1812.00271 (2018)
Rubin, E.H., et al.: A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch. Neurol. 55(3), 395–401 (1998)
Thomas, A.W., Müller, K.R., Samek, W.: Deep transfer learning for whole-brain fMRI analyses. arXiv preprint arXiv:1907.01953 (2019)
Ulloa, A., Plis, S., Calhoun, V.: Improving classification rate of schizophrenia using a multimodal multi-layer perceptron model with structural and functional MR. arXiv preprint arXiv:1804.04591 (2018)
Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Yan, W., et al.: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2017)
Acknowledgement
This study was in part supported by NIH grants 1R01AG063153 and 2R01EB006841. We’d like to thank and acknowledge the open access data platforms and data sources that were used for this work, including: Human Connectome Project (HCP), Open Access Series of Imaging Studies (OASIS), Autism Brain Imaging Data Exchange (ABIDE I), Function Biomedical Informatics Research Network (FBIRN) and Centers of Biomedical Research Excellence (COBRE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mahmood, U. et al. (2020). Whole MILC: Generalizing Learned Dynamics Across Tasks, Datasets, and Populations. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-59728-3_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59727-6
Online ISBN: 978-3-030-59728-3
eBook Packages: Computer ScienceComputer Science (R0)