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Abstract. We present a deep neural network method for learning a
personal representation for individuals that are performing a self neuro-
modulation task, guided by functional MRI (fMRI).
This neurofeedback task (watch vs. regulate) provides the subjects with
a continuous feedback contingent on down regulation of their Amygdala
signal and the learning algorithm focuses on this region’s time-course of
activity. The representation is learned by a self-supervised recurrent neu-
ral network, that predicts the Amygdala activity in the next fMRI frame
given recent fMRI frames and is conditioned on the learned individual
representation.
It is shown that the individuals’ representation improves the next-frame
prediction considerably. Moreover, this personal representation, learned
solely from fMRI images, yields good performance in linear prediction
of psychiatric traits, which is better than performing such a prediction
based on clinical data and personality tests. Our code is attached as
supplementary and the data would be shared subject to ethical approvals.

Keywords: fMRI, Amygdala-neurofeedback, imaging based diagnosis,
psychiatry, recurrent neural networks.

1 Introduction

In this work, we propose to employ self-supervision in order to learn an in-
dividual, per-subject representation from fMRI-based neurofeedback sessions.
Neurofeedback (NF) is a Brain Computer Interface approach for non-invasive
self-neuromodulation via reinforcement learning. NF has been widely used in
the last decade in research and clinical settings for training people how to alter
their own brain functionality; activity or connectivity.

This representation is shown to be highly predictive of multiple psychiatric
condition in three different datasets: (i) individuals suffering from PTSD, (ii)
individuals suffering from fibromyalgia and (iii) a control dataset of healthy
individuals.
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Fig. 1: Holistic overview of our method. (a) The time series are extracted from
raw data. (b) The Passive2Active Translator is trained, without knowledge of
subject’s identity. (c) subject-conditioned LSTM and a look-up-table (LUT)
are trained via the next active frame prediction task. (d) A linear classifier
is trained to predict psychiatric and demographic traits based on learned per-
subject representations.

The self-supervised method predicts the activity of the Amygdala at the
next fMRI frame based on the previous frames, conditioned on the individual
representation. For this purpose, we employ a variant of the LSTM algorithm,
in which the personal embedding is used to condition all four LSTM gates.

The learned personal embedding is a static vector, which encodes information
about the individual that is meaningful in predicting the future state of the
Amygdala. Remarkably, this vector is more predictive of the subject’s psychiatric
traits, age and previous experience in neurofeedback, than the individual’s data,
when predicting one trait from all other traits.

The comparison is done using linear classifiers, in order to verify that the
relevant information is encoded in a relatively explicit way and to alleviate the
risk of over-fitting by attempting multiple hyper-parameters.

A complete overview of our approach is illustrated in Fig. 1. The first step
after extracting fMRI frames, is to learn an auto-encoder which maps between
the two stages of the neurofeedback session; one in which the subject is viewing
passively, and one in which the subject is requested to control their Amygdala
activity. A new variant of LSTM is then trained to predict the activity in the
next fMRI frame. Finally, the representation learned as part of the LSTM is
employed for predicting psychiatric traits.
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2 Related Work

Functional magnetic resonance imaging (fMRI), as a non-invasive imaging tech-
nique, has been extensively applied to study psychiatric disorders [3,9]. Deep
learning methods have been applied to this field, mostly focusing on binary clas-
sification of subjects suffering from a specific psychopathology versus healthy
subjects under resting state [4,15], i.e., using fully supervised learning. Our work
is focused on self-supervised learning while participants suffering from various
psychopathologies and healthy controls are performing a neurofeedback training
task.

During an NF session, the trainee is given the task of regulating their brain
state in a target region using some mental strategy. Brain activity modulation
in the determined direction (up or down), resulting in contingent change in a
rewarding perceived interface, thus reflecting level of task success [7]. Recent
technological advancements in online real-time data analysis have made fMRI
a popular tool for employing NF in research settings, providing brain targeting
with high spatial resolution [12]. However, due to the relatively high cost of
using this imaging modality and the burden of multiple sessions, fMRI-based
NF could benefit from on-line personalization of the procedure, which would
make the training more efficient and advance this tool into translational and
clinical trials.

3 Problem Formulation

A real-time fMRI-NF task targeting down-regulation of the right Amygdala re-
gion was given, using an interactive game-like feedback interface where the sub-
jects control the speed of a skateboard rider. Similar to other studies in the field,
local fMRI activation changes were measured using a two-phase NF paradigm
repeated over several runs [10], where each training run was comprised of a
passive and an active phase. During the passive phase, a skateboard rider and a
speedometer were displayed on the screen and Amygdala activation was passively
measured. Subjects were instructed to passively view the skateboard, which was
moving at a constant speed. During the following active phase, the speed of
the rider and the speedometer represented the on-going Amygdala signal change
compared to the passive phase, which was calculated on-line and updated con-
tinuously every three seconds.

During this phase, subjects were instructed to decrease the speed of the
skateboard as much as possible, by practicing mental strategies of their choos-
ing. Down-regulation of the Amygdala, which reflects a more relaxed state, led to
a lower skateboard speed and fewer objects on the screen [7]. Instructions given
were not specific to the target brain functionality, in order to allow individuals
to efficiently adopt different strategies [8]. At the end of each active phase, a bar
indicating the average speed during the current run was presented for six sec-
onds. Each subject performed M = 3 runs of Passive/Active phases, where each
passive phase lasted one minute. Each active phase lasted one minute (Healthy
controls and PTSD patients) or two minutes (Fibromyalgia patients).
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Both the passive and the active phases gave rise to T = 14 temporal samples
of the subject’s Amygdala. We denote the spatial resolution of the relevant part
of the fMRI images acquired every 3 seconds as H ×W ×D and our dataset is,
therefore, comprised of per-subject tensors in R2×H×W×D×T×M . In our setting,
M = 3, T = 14. We used three datasets in our experiments: (i) PTSD- com-
prised of 53 subjects, (H = 6,W = 5, D = 6), (ii) Fibromialgya- comprised of
24 subjects, (H = 6,W = 5, D = 6), and (iii) Healthy Control- comprised of
87 subjects, (H = 10,W = 8, D = 10).

In addition to the fMRI sequences, we receive clinical information about
each subject, which we denote as yn ∈ R3, n being the index of the patient,
and is comprised of the following: (1) Toronto Alexithymia Scale (TAS-20)
– a self-report questionnaire measuring difficulties in expressing and identifying
emotions [1], (2) State-Trait Anxiety Inventory (STAI) – State anxiety was
measured using a validated 20-item inventory [11], and (3) Clinician Adminis-
tered PTSD Scale (CAPS-5) 1 – Patients underwent clinical assessment by
a trained psychologist based on this widely-used scale for PTSD diagnosis [13].
For the control patients, we also receive the following demographic information:
(1) Age and (2) Past Experience in Neuro-Feedback Tasks, quantized to
three levels: no experience, two previous sessions, or six previous sessions.
fMRI Data Acquisition and Pre-Processing Structural and functional
scans were performed in a 3.0T Siemens MRI system (MAGNETOM Prisma)
using a 20-channel head coil. To allow high-resolution structural images, a T1-
weighted three-dimensional (3D) sagittal MPRAGE pulse sequence (repetition
time/echo time=1,860/2.74 ms, flip angle=8°, pixel size=1 × 1 mm, field of
view=256× 256mm) was used. Functional whole-brain scans were performed in
an interleaved top-to-bottom order, using a T2*-weighted gradient echo planar
imaging pulse sequence (repetition time/echo time=3,000/35ms, flip angle=90°,
pixel size=1.56mm, field of view=200× 200mm, slice thickness=3 mm, 44 slices
per volume).

Preprocessing of the fMRI data was done with the MATLAB based CONN
toolbox [14] and included realignment of the functional volumes, motion correc-
tion using rigid-body transformations in six axes, normalization to MNI space
and spatial smoothing with an isotropic 6-mm full width at half-maximum Gaus-
sian kernel. The processed volumes were then run through de-noising and de-
trending regression algorithms, followed by band-pass filtering in the range of of
0.008-0.09 Hz. Amygdala voxels were defined as a functional cluster centered at
(x=21, y=-2, z=-24) and exported for further analysis as a 4-D matrix.

4 Method

Our neural network models were trained to predict the subjects’ clinical and de-
mographic information, given the raw fMRI sequences. This was done using two
sub-networks, denoted as f, ρ respectively: (1) Learning a personalized represen-
tation for each subject, and (2) predicting the subjects’ clinical and demographic
information, given the representation learned by f .
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4.1 Overview

The task performed by sub-network f is predicting the current active frame,
given all previous passive and active frames and the current passive frame.
Next Active Frame Prediction For each subject n, active and passive
frames from the M sessions are concatenated (separately) to receive the entire
passive and active fMRI sequences, denoted as pn, an ∈ R(H,W,D,M ·T ), respec-
tively. Thus pn[t], an[t] are the passive and active fMRI frames captured at time
step t.

Capital letters Pn[t] = (pn[0], pn[1], . . . , pn[t]),andAn[t] = (an[0], an[1], . . . , an[t])
are used to denote a sequence from its beginning, and until time step t. The
model f predicts the active-phase tensor at time point t of subject n:

ân[t] = f(An[t− 1], Pn[t], n) (1)

Predicting Subjects’ Traits A by-product of the training process of f , is
a learned per-subject personal embedding vector, denoted as en. The prediction
of ρ for subject n can be denoted as:

ŷn = ρ(en) = G>en + b (2)

where G is a matrix and b is a vector.

4.2 Learning a Personalized Representation

The f model is composed of two deep networks. The first network, ϕ, maps,
one by one, passive frames to the corresponding active frames. The second sub-
network, ψ, is an LSTM that predicts the current active frame, given the output
of the first sub-network, the previous active frame and the subject’s identifier.

Passive2Active translator This model, ϕ, is trained in a supervised way to
map an input frame from the passive phase, pn[t], to its coupled frame from the
active phase, an[t], with the subject’s identity unknown to the model. Training
is done by minimizing the following loss function:

LRecon =
∑
n

M ·T∑
t=0

||an[t]− ϕ(pn[t])||2 (3)

The architecture follows that of de-noising autoencoders, which are widely
used in medical image analysis [5]. The network ϕ is comprised of four linear
layers with expanding output sizes, followed by four shrinking linear layers, sep-
arated by DropOut and ReLU activation functions, alternately.

The conditioned LSTM network In the conventional LSTM [6], given an
input xt =

(
ϕ(pn[t]), an[t−1]

)
, the previous hidden state ht−1, and the previous

cell state ct−1, the LSTM’s outputs ct and ht are calculated using four learned
gates, dubbed forget gate, input gate, update gate, output gate. The information
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flow is as depicted in Eq.4–9. In the conditioned LSTM we employ, a represen-
tation is learned for every subject n, marked en. This user-embedding is used
as a conditioning input to the LSTM sub-networks, by concatenating it to the
input at every time step. In this setting, the information flow is as depicted by
equations Eq.4*–7*, Eq.8–9.
Vanilla Lstm Equations Conditioned LSTM Equations
fnt = σ(W f · (xt, ht−1)) (4) fnt = σ(W f · (xt, ht−1, en)) (4*)
int = σ(W i · (xt, ht−1)) (5) int = σ(W i · (xt, ht−1, en)) (5*)
unt = tanh(Wu · (xt, ht−1)) (6) unt = tanh(Wu · (xt, ht−1, en)) (6*)
ont = σ(W o · (xt, ht−1)) (7) ont = σ(W o · (xt, ht−1, en)) (7*)

cnt = cnt−1 � fnt + unt � int (8)
hnt = ont � tanh(cnt ) (9)

Where W (·) are learned weights for each one of the gates, σ(·) is the Sigmoid
function, � is the element-wise multiplication operator and (·, ·) is the concate-
nation operator.

Once the first sub-network, ϕ, is trained, it is frozen and we train, concur-
rently, the second sub-network, ψ, and the subjects’ encoding vectors, which are
stored in a look-up-table (LUT) χ. With all sub-networks defined, we can write
Eq. 1 more explicitly:

ân[t] = f
(
An[t− 1], Pn[t], n

)
= ψ

(
An[t− 1], ϕ(Pn[t]), χ(n)

)
, (10)

where ϕ is applied separately for every frame of Pn[t].
When training the conditioned LSTM, the input, xnt , is a concatenation of(

ϕ(pn[t]), an[t− 1]
)
. The model also receives en = χ(n), as a conditioning input.

As illustrated in Fig. 2, the subject’s LUT, χ, and conditioned LSTM, ψ, are
tasked to predict the subject’s current active frame, by minimizing the following
loss function:

LRecon =
∑
n

M ·T∑
t=0

||an[t]− ψ(xnt , en)||2 (11)

In order to demonstrate that the user embedding is beneficial, we also train
a baseline model, in which a vanilla LSTM is used, without the embedding.

4.3 Predicting Psychiatric Traits using the subject’s representation

In the final training phase, after learning an embedding per subject, we freeze the
LUT, and evaluate its utility in identifying psychiatric traits. For this purpose,
we employ a linear classifier, denoted as ρ (Eq. 2), which is trained to minimize
the Cross Entropy loss function, i.e, predicting the subject’s psychiatric and
demographic information, yn, according to the subject’s embedding, en.

The formulation as a classification problem and not as a regression problem
is done in order to have the results of all prediction problems on the same
human-interpretable scale. The quantization of the three scores (TAS-20, STAI,
CAPS-5) and age is done by calculating the mean and variance for every score,
and creating five labels by the following ranges: (−∞, µ − 2 · σ], (µ − 2 · σ, µ −
σ], (µ− σ, µ+ σ], (µ+ σ, µ+ 2σ], (µ+ 2σ,∞). Results for the regression scheme,
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Fig. 2: In our model’s second phase of training, the Passive2Active translator,
ϕ, is frozen. The conditional LSTM, ψ, and the LUT, χ, are trained to predict
an(t), the current active frame, given xt = (an[t− 1], ϕ(pn[t])), and the subject
identifier, n. The conditioning is based on a LUT, which provides the embedding
vector of each subject, χ(n) = en.

presenting rMSE of the model trained with the L2 loss, are provided in the
supplementary material.

4.4 Inference

When presenting our model with a new subject, m, we first use the already
trained (and frozen) f neural network to learn an embedding vector em. This
is done using only the raw fMRI signals, by fitting em in a next active frame
prediction task. After em is learned, it is passed through the linear classifier (ρ),
to receive the model’s prediction, ŷm.

5 Experiments

Data partitioning distinguishes between train, evaluation, and test set, each com-
posed of different subjects, with a 60-20-20 split. Each experiment was repeated
10 times on random splits, and our plots report mean and SD. In all of the
below-mentioned experiments, the personal embedding vector size was set to 12
(R12).

Next Active Frame Prediction To evaluate the performance of our con-
ditioned LSTM method, we compared its performance in predicting the next
active frame given the P2A output to (i) a vanilla LSTM model with the same
hidden-state size, and (ii) our trained Passive2Active Translator. Fig. 3 com-
pares the three models. Evidently, the vanilla LSTM, which receives the data
as a sequence of frames, significantly improves the performance of the memory-
less Passive2Active Translator. Our conditioned LSTM, which incorporates the
per-subject representation, outperforms the vanilla LSTM.
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Fig. 3: Next frame prediction error.
corrected re-sampled t-test [2]:
*P < 0.05, **P < 0.01.

(a) Past Experience

(b) Age

Fig. 4: Demographic accuracy

Predicting Subject’s Psychiatric and Demographic Criterias We test
whether our learned representation, trained only with raw fMRI images, has the
ability to predict a series of psychiatric and demographic criteria, not directly
related to the neurofeedback task.

We used our method to predict (i) STAI and (ii) TAS-20 for PTSD, Fibro-
miaglgya and control subjects, (iii) CAPS-5 for PTSD subjects. Demographic
information, (iv) age, and (v) past NeuroFeedback experience were predicted for
control subjects.

Our linear classification scheme, applied to the learned embedding vectors, is
compared to the following baselines, which all receive the raw fMRI sequence as
input, denoted as x: (1) fMRI CNN- Convolutional layer with k = 10 filters,
followed by a mean pooling operation to receive z(x) ∈ R(2·M,k,T ), which is
the input to an MLP with l = 3 layers, which predicts the label; (2) fMRI
Statistical Data- This method performs two spacial pooling operations on the
fMRI sequence: (i) mean and (ii) standard deviation to create the statistics
tensor, z(x) ∈ R(2·M,2,T ), which is fed to a linear layer, which predicts the label;
(3) Clinical Prediction- SVM regression of every trait, according to the other
traits (leave-one-trait-out, where the data contains all psychiatric traits and
the two demographic traits); and (4) Dummy Prediction- Predicts the most
common label.

The results are shown in Fig. 4,5. It is evident that our method significantly
outperforms the baseline methods in predicting the correct range of both the
demographic and the psychiatric traits.
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(a) (b) (c)

Fig. 5: Psychiatric trait predictions. (a) STAI, (b) TAS-20, (c) CAPS-5.

6 Conclusions

We present a method for learning a static, meaningful representation of a subject
performing a neurofeedback task. This subject embedding is trained on a self
supervised task and is shown to be highly predictive of psychiatric traits, for
which no physical examinations or biological markers exist, as well as for age,
and NF experience. We, therefore, open a new avenue for psychiatric diagnosis
that is not based on an interview or a questionnaire.
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