Abstract
Function magnetic resonance imaging (fMRI) data are typically contaminated by noise introduced by head motion, physiological noise, and thermal noise. To mitigate noise artifact in fMRI data, a variety of denoising methods have been developed by removing noise factors derived from the whole time series of fMRI data and therefore are not applicable to real-time fMRI data analysis. In the present study, we develop a generally applicable, deep learning based fMRI denoising method to generate noise-free realistic individual fMRI volumes (time points). Particularly, we develop a fully data-driven 3D convolutional encapsulated Long Short-Term Memory (3DConv-LSTM) approach to generate noise-free fMRI volumes regularized by an adversarial network that makes the generated fMRI volumes more realistic by fooling a critic network. The 3DConv-LSTM model also integrates a gate-controlled self-attention model to memorize short-term dependency and historical information within a memory pool. We have evaluated our method based on both task and resting state fMRI data. Both qualitative and quantitative results have demonstrated that the proposed method outperformed state-of-the-art alternative deep learning methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caballero-Gaudes, C., Reynolds, R.C.: Methods for cleaning the BOLD fMRI signal. Neuroimage 154, 128–149 (2017)
Murphy, K., Birn, R.M., Bandettini, P.A.: Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013)
Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014)
Ciric, R., et al.: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 (2017)
Raut, R.V., Mitra, A., Snyder, A.Z., Raichle, M.E.: On time delay estimation and sampling error in resting-state fMRI. Neuroimage 194, 211–227 (2019)
Birn, R.M., Smith, M.A., Jones, T.B., Bandettini, P.A.: The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 40, 644–654 (2008)
Tijssen, R.H., Jenkinson, M., Brooks, J.C., Jezzard, P., Miller, K.L.: Optimizing RetroICor and RetroKCor corrections for multi-shot 3D FMRI acquisitions. NeuroImage 84, 394–405 (2014)
Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007)
Kay, K., Rokem, A., Winawer, J., Dougherty, R., Wandell, B.: GLMdenoise: a fast, automated technique for denoising task-based fMRI data. Front. Neurosci. 7, 247 (2013)
Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M.: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014)
Pruim, R.H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J.K., Beckmann, C.F.: ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112, 267–277 (2015)
Kam, T.-E., et al.: A deep learning framework for noise component detection from resting-state functional MRI. In: Shen, D., Liu, T., Peters, Terry M., Staib, Lawrence H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 754–762. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_84
Yang, Z., Zhuang, X., Sreenivasan, K., Mishra, V., Curran, T., Cordes, D.: A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory. Med. Image Anal. 60, 101622 (2020)
Yan, Y., et al.: Reconstructing lost BOLD signal in individual participants using deep machine learning. bioRxiv 808089 (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Berthelot, D., Raffel, C., Roy, A., Goodfellow, I.: Understanding and improving interpolation in autoencoders via an adversarial regularizer. arXiv preprint arXiv:1807.07543 (2018)
Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry 19, 659–667 (2014)
Wang, Y., Jiang, L., Yang, M.-H., Li, L.-J., Long, M., Fei-Fei, L.: Eidetic 3D LSTM: a model for video prediction and beyond. In: International Conference on Learning Representations (2018)
Esteban, O., et al.: fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019)
Li, H., Fan, Y.: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks. NeuroImage 202, 116059 (2019)
Li, H., Fan, Y.: Identification of temporal transition of functional states using recurrent neural networks from functional MRI. In: Frangi, Alejandro F., Schnabel, Julia A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 232–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_27
Li, H., Fan, Y.: Brain decoding from functional MRI using long short-term memory recurrent neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 320–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_37
Acknowledgement
Research reported in this study was partially supported by the National Institutes of Health under award number [R01MH120811 and R01EB022573]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, C., Li, H., Jiao, Z., Du, T., Fan, Y. (2020). A 3D Convolutional Encapsulated Long Short-Term Memory (3DConv-LSTM) Model for Denoising fMRI Data. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-59728-3_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59727-6
Online ISBN: 978-3-030-59728-3
eBook Packages: Computer ScienceComputer Science (R0)