Skip to main content

Detecting Changes of Functional Connectivity by Dynamic Graph Embedding Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

Our current understandings reach the unanimous consensus that the brain functions and cognitive states are dynamically changing even in the resting state rather than remaining at a single constant state. Due to the low signal-to-noise ratio and high vertex-time dependency in BOLD (blood oxygen level dependent) signals, however, it is challenging to detect the dynamic behavior in connectivity without requiring prior knowledge of the experimental design. Like the Fourier bases in signal processing, each brain network can be summarized by a set of harmonic bases (Eigensystem) which are derived from its latent Laplacian matrix. In this regard, we propose to establish a subject-specific spectrum domain, where the learned orthogonal harmonic-Fourier bases allow us to detect the changes of functional connectivity more accurately than using the BOLD signals in an arbitrary sliding window. To do so, we first present a novel dynamic graph learning method to simultaneously estimate the intrinsic BOLD signals and learn the joint harmonic-Fourier bases for the underlying functional connectivity network. Then, we project the BOLD signals to the spectrum domain spanned by learned network harmonic and Fourier bases, forming the new system-level fluctuation patterns, called dynamic graph embeddings. We employ the classic clustering approach to identify the changes of functional connectivity using the novel dynamic graph embedding vectors. Our method has been evaluated on working memory task-based fMRI dataset and comparisons with state-of-the-art methods, where our joint harmonic-Fourier bases achieves higher accuracy in detecting multiple cognitive states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)

    Article  Google Scholar 

  2. Barch, D.M., et al.: Function in the human connectome: task-FMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  3. Benard, G., et al.: Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120(5), 838–848 (2007)

    Article  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  5. Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T.: The chronnectome: time-varying connectivity networks as the next frontier in FMRI data discovery. Neuron 84(2), 262–274 (2014)

    Article  Google Scholar 

  6. Cribben, I., Haraldsdottir, R., Atlas, L.Y., Wager, T.D., Lindquist, M.A.: Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage 61(4), 907–920 (2012)

    Article  Google Scholar 

  7. Damaraju, E., et al.: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clin. 5, 298–308 (2014)

    Article  Google Scholar 

  8. Friston, K.J.: Functional and effective connectivity: a review. Brain Connect. 1(1), 13–36 (2011)

    Article  MathSciNet  Google Scholar 

  9. Hindriks, R., et al.: Can sliding-window correlations reveal dynamic functional connectivity in resting-state FMRI? Neuroimage 127, 242–256 (2016)

    Article  Google Scholar 

  10. Hutchison, R.M., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)

    Article  Google Scholar 

  11. Hutchison, R.M., Womelsdorf, T., Gati, J.S., Everling, S., Menon, R.S.: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 34(9), 2154–2177 (2013)

    Article  Google Scholar 

  12. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    MATH  Google Scholar 

  13. Shakil, S., Lee, C.H., Keilholz, S.D.: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. Neuroimage 133, 111–128 (2016)

    Article  Google Scholar 

  14. Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T.: Groupwise whole-brain parcellation from resting-state FMRI data for network node identification. Neuroimage 82, 403–415 (2013)

    Article  Google Scholar 

  15. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  16. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8(9), 418–425 (2004)

    Article  Google Scholar 

  17. Van Den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state FMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)

    Article  Google Scholar 

  18. Xu, Y., Lindquist, M.A.: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in FMRI data. Front. Neurosci. 9, 285 (2015)

    Article  Google Scholar 

  19. Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., Breakspear, M.: Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. 111(28), 10341–10346 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Hou, J., Laurienti, P.J., Wu, G. (2020). Detecting Changes of Functional Connectivity by Dynamic Graph Embedding Learning. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics