Skip to main content

PIANO: Perfusion Imaging via Advection-Diffusion

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

Perfusion imaging (PI) is clinically used to assess strokes and brain tumors. Commonly used PI approaches based on magnetic resonance imaging (MRI) or X-ray computed tomography (CT) measure the effect of a contrast agent moving through blood vessels and into tissue. Contrast-agent free approaches, for example, based on intravoxel incoherent motion, also exist, but are not routinely used clinically. MR or CT perfusion imaging based on contrast agents relies on the estimation of the arterial input function (AIF) to approximately model tissue perfusion, neglecting spatial dependencies. Reliably estimating the AIF is also non-trivial, leading to difficulties with standardizing perfusion measures. In this work we propose a data-assimilation approach (PIANO) which estimates the velocity and diffusion fields of an advection-diffusion model best explaining the contrast dynamics. PIANO accounts for spatial dependencies and neither requires estimating the AIF nor relies on a particular contrast agent bolus shape. Specifically, we propose a convenient parameterization of the estimation problem, a numerical estimation approach, and extensively evaluate PIANO. We demonstrate that PIANO can successfully resolve velocity and diffusion field ambiguities and results in sensitive measures for the assessment of stroke, comparing favorably to conventional measures of perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our dataset is acquired axially, but BCs could be modified for different acquisition formats as needed. This BC essentially replaces determining the AIF.

  2. 2.

    While a paired test between corresponding voxels is possible and results in similar measures, we opt for the unpaired test to avoid voxel-level correspondence issues.

References

  1. Aja-Fernandez, S., Niethammer, M., Kubicki, M., Shenton, M.E., Westin, C.: Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans. Med. Imaging 27(10), 1389–1403 (2008). https://doi.org/10.1109/TMI.2008.920609

    Article  Google Scholar 

  2. Barbarosie, C.: Representation of divergence-free vector fields. Quart. Appl. Math. 69 (2011). https://doi.org/10.1090/S0033-569X-2011-01215-2

  3. Bouvy, W.H., et al.: Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI. NMR Biomed. 29(9), 1295–1304 (2016). https://doi.org/10.1002/nbm.3306

    Article  Google Scholar 

  4. Brass, L.M., Prohovnik, I., Pavlakis, S.G., DeVivo, D.C., Piomelli, S., Mohr, J.P.: Middle cerebral artery blood velocity and cerebral blood flow in sickle cell disease. Stroke 22(1), 27–30 (1991). https://doi.org/10.1161/01.STR.22.1.27

    Article  Google Scholar 

  5. Cookson, A., et al.: A spatially-distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging. Med. Image Anal. 18(7), 1200–1216 (2014). https://doi.org/10.1016/j.media.2014.07.002

    Article  Google Scholar 

  6. Demeestere, J., Wouters, A., Christensen, S., Lemmens, R., Lansberg, M.G.: Review of perfusion imaging in acute ischemic stroke. Stroke 51(3), 1017–1024 (2020). https://doi.org/10.1161/STROKEAHA.119.028337

    Article  Google Scholar 

  7. Essig, M., et al.: Perfusion MRI: the five most frequently asked technical questions. AJR Am. J. Roentgenol. 200(1), 24–34 (2013). https://doi.org/10.2214/AJR.12.9543

    Article  Google Scholar 

  8. Fieselmann, A., Kowarschik, M., Ganguly, A., Hornegger, J., Fahrig, R.: Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. J. Biomed. Imaging 2011 (2011). https://doi.org/10.5555/1992576.2070240

  9. Franca, L.P., Frey, S.L., Hughes, T.J.: Stabilized finite element methods: I. application to the advective-diffusive model. Comput. Meth. Appl. Mech. Eng. 95(2), 253–276 (1992). https://doi.org/10.1016/0045-7825(92)90143-8

  10. Harabis, V., Kolar, R., Mezl, M., Jirik, R.: Comparison and evaluation of indicator dilution models for bolus of ultrasound contrast agents. Physiol. Meas. 34(2), 151–162 (2013). https://doi.org/10.1088/0967-3334/34/2/151

    Article  Google Scholar 

  11. Ivanov, K., Kalinina, M., Levkovich, Y.: Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvascular Res. 22(2), 143–155 (1981). https://doi.org/10.1016/0026-2862(81)90084-4

  12. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: An open access repository for biomedical research and collaboration. J. Med. Internet Res. (2013). https://doi.org/10.2196/jmir.2930

    Article  Google Scholar 

  13. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511791253

  14. Maier, O., et al.: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI medical image analysis. Med. Image Anal. 35 (2017). https://doi.org/10.1016/j.media.2016.07.009

  15. Marín-Padilla, M.: The human brain intracerebral microvascular system: development and structure. Front. Neuroanatomy 6, 38 (2012)

    Article  Google Scholar 

  16. Meijering, E.H.W., Niessen, W.J., Pluim, J.P.W., Viergever, M.A.: Quantitative comparison of sinc-approximating kernels for medical image interpolation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 210–217. Springer, Heidelberg (1999). https://doi.org/10.1007/10704282_23

    Chapter  Google Scholar 

  17. Mouridsen, K., Christensen, S., Gyldensted, L., Østergaard, L.: Automatic selection of arterial input function using cluster analysis. Magn. Reson. Med. 55(3), 524–531 (2006). https://doi.org/10.1002/mrm.20759

    Article  Google Scholar 

  18. Niethammer, M., Estepar, R.S.J., Bouix, S., Shenton, M., Westin, C.: On diffusion tensor estimation. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2622–2625 (2006). https://doi.org/10.1109/IEMBS.2006.259826

  19. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  20. Schmainda, K., et al.: Moving toward a consensus DSC-MRI protocol: validation of a low–flip angle single-dose option as a reference standard for brain tumors. Am. J. Neuroradiol. (2019). https://doi.org/10.3174/ajnr.A6015

    Article  Google Scholar 

  21. Schmainda, K., et al.: Quantitative delta T1 (dT1) as a replacement for adjudicated central reader analysis of contrast-enhancing tumor burden: A subanalysis of the american college of radiology imaging network 6677/radiation therapy oncology group 0625 multicenter brain tumor. Am. J. Neuroradiol. (2019). https://doi.org/10.3174/ajnr.A6110

    Article  Google Scholar 

  22. Strouthos, C., Lampaskis, M., Sboros, V., Mcneilly, A., Averkiou, M.: Indicator dilution models for the quantification of microvascular blood flow with bolus administration of ultrasound contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1296–1310 (2010). https://doi.org/10.1109/TUFFC.2010.1550

    Article  Google Scholar 

  23. Weickert, J.: Anisotropic diffusion in image processing, pp. 15–25 (1998). https://www.mia.uni-saarland.de/weickert/Papers/book.pdf

Download references

Acknowledgment

Research reported in this work was supported by the National Institutes of Health (NIH) under award number NIH 2R42NS086295. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peirong Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4183 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, P., Lee, Y.Z., Aylward, S.R., Niethammer, M. (2020). PIANO: Perfusion Imaging via Advection-Diffusion. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics