Skip to main content

COVLET: Covariance-Based Wavelet-Like Transform for Statistical Analysis of Brain Characteristics in Children

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

  • 7887 Accesses

Abstract

Adolescence is a period of substantial experience-dependent brain development. A major goal of the Adolescent Brain Cognitive Development (ABCD) study is to understand how brain development is associated with various environmental factors such as socioeconomic characteristics. While ABCD study offers a large sample size, it still requires a sensitive method to detect subtle associations when studying typically developing children. Therefore, we propose a novel transform, i.e. covariance-based multi-scale transform (COVLET), which derives a multi-scale representation from a structured data (i.e., P features from N samples) that increases performance of downstream analyses. The theory driving our work stems from wavelet transform in signal processing and orthonormality of the principal components of a covariance matrix. Given the microstructural properties of brain regions from children enrolled in the ABCD study, we demonstrate a multi-variate statistical group analysis on family income using the multi-scale feature derived from brain structure and validate improvement in the statistical outcomes. Furthermore, our multi-scale descriptor reliably identifies specific regions of the brain that are susceptible to socioeconomic disparity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blakemore, S.J.: Imaging brain development: the adolescent brain. Neuroimage 61(2), 397–406 (2012)

    Article  Google Scholar 

  2. Bullmore, E., Fadili, J., Breakspear, M., Salvador, R., Suckling, J., Brammer, M.: Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat. Methods Med. Res. 12(5), 375–399 (2003)

    Article  MathSciNet  Google Scholar 

  3. Cai, Z., et al.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  4. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comp. Harmonic Anal. 21(1), 53–94 (2006)

    Google Scholar 

  5. DeRosse, P., Ikuta, T., Karlsgodt, K.H., et al.: History of childhood maltreatment is associated with reduced fractional anisotropy of the accumbofrontal ‘reward’ tract in healthy adults. Brain Imaging Behav. 14, 1–9 (2020)

    Google Scholar 

  6. Destrieux, C., et al.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  7. Farah, M.J.: The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron 96(1), 56–71 (2017)

    Article  Google Scholar 

  8. Fuhrmann, D., Knoll, L.J., Blakemore, S.J.: Adolescence as a sensitive period of brain development. Trends Cogn. Sci. 19(10), 558–566 (2015)

    Article  Google Scholar 

  9. Fuster, J.M.: Frontal lobe and cognitive development. J. Neurocytol. 31(3–5), 373–385 (2002)

    Article  Google Scholar 

  10. Gianaros, P.J., Marsland, A.L., Sheu, L.K., Erickson, K.I., Verstynen, T.D.: Inflammatory pathways link socioeconomic inequalities to white matter architecture. Cereb. Cortex 23(9), 2058–2071 (2013)

    Article  Google Scholar 

  11. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comp. Harmonic Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  12. Hammond, D.K., Vandergheynst, P., Gribonval, R.: The Spectral graph wavelet transform: fundamental theory and fast computation. In: Stanković, L., Sejdić, E. (eds.) Vertex-Frequency Analysis of Graph Signals. SCT, pp. 141–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03574-7_3

    Chapter  Google Scholar 

  13. Jednoróg, K., et al.: The influence of socioeconomic status on children’s brain structure. PloS One 7(8), e42486 (2012)

    Google Scholar 

  14. Jernigan, T.L., Brown, T.T., Hagler Jr., D.J., et al.: The pediatric imaging, neurocognition, and genetics (ping) data repository. Neuroimage 124, 1149–1154 (2016)

    Article  Google Scholar 

  15. Kim, W.H., et al.: Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. In: NeurIPS, pp. 1241–1249 (2012)

    Google Scholar 

  16. Kim, W.H., Kim, H.J., Adluru, N., Singh, V.: Latent variable graphical model selection using harmonic analysis: applications to the human connectome project (HCP). In: CVPR, pp. 2443–2451 (2016)

    Google Scholar 

  17. Kim, W.H., et al.: Multi-resolutional shape features via non-euclidean wavelets: applications to statistical analysis of cortical thickness. NeuroImage 93, 107–123 (2014)

    Article  Google Scholar 

  18. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: CVPR, pp. 624–632 (2017)

    Google Scholar 

  19. Lebel, C., Deoni, S.: The development of brain white matter microstructure. Neuroimage 182, 207–218 (2018)

    Article  Google Scholar 

  20. Lebel, C., et al.: Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40(3), 1044–1055 (2008)

    Article  MathSciNet  Google Scholar 

  21. Lee, A.: Us poverty thresholds and poverty guidelines: What’s the difference. Population Reference Bureau (2019) (2018)

    Google Scholar 

  22. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  23. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. TPAMI 11(7), 674–693 (1989)

    Article  Google Scholar 

  24. Mani, I., Zhang, I.: k-NN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of Workshop on Learning from Imbalanced Datasets, vol. 126 (2003)

    Google Scholar 

  25. Marshall, A.T., et al.: Association of lead-exposure risk and family income with childhood brain outcomes. Nat. Med. 26(1), 91–97 (2020)

    Article  Google Scholar 

  26. Noble, K.G., et al.: Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18(5), 773 (2015)

    Article  Google Scholar 

  27. Sowell, E.R., Delis, D., Stiles, J., Jernigan, T.L.: Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural mri study. J. Int. Neuropsychol. Soc. 7(3), 312–322 (2001)

    Article  Google Scholar 

  28. Volkow, N.D., et al.: The conception of the abcd study: from substance use to a broad nih collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018)

    Article  Google Scholar 

  29. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research was supported by GAANN Doctoral Fellowships in Computer Science and Engineering at UTA sponsored by the U.S. Department of Education, NIH R01 AG059312 and IITP-2020-2015-0-00742. Numerous funding agencies have continued to support the ABCD study. A full list is provided at https://abcdstudy.org. We also would like to thank Dr. Rui Meng for insightful discussions and comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 196 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Isaiah, A., Kim, W.H. (2020). COVLET: Covariance-Based Wavelet-Like Transform for Statistical Analysis of Brain Characteristics in Children. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics