Skip to main content

Evolutionary Approach for the Multi-objective Bike Routing Problem

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2020)

Abstract

In this paper, a multi-objective approach for the bike routing problem is presented. Bike routing represents specific challenges, since cyclists have different experiences, concerns, and route preferences. Our approach considers two criteria: the total traveled distance and the cyclists safety. Finding the optimal Pareto set is computationally unfeasible for these problems, therefore, the goal of this work is to create a non-exact method capable of producing a set of quality solutions in a timely manner. A heuristic that modifies the multi-label setting algorithm is used to create an initial population and a genetic elitist algorithm is used to find an approximated Pareto set of optimal routes. The proposed methodology is applied on a practical case study, in which real data from OpenStreetMaps (OSM) and Shuttle Radar Topography Mission (SRTM) was used to model the graph for the road network of the city of Aveiro, with 9506 nodes and 21208 edges. The results show that the approach is fast enough for interactive use in a planning tool and produces a set of quality solutions, regarding two criteria, the traveled distance and the safety of the path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akar, G., Clifton, K.: Influence of individual perceptions and bicycle infrastructure on decision to bike. Transport. Res. Rec. J. Transport. Res. Board 2140(2140), 165–172 (2009). http://trrjournalonline.trb.org/doi/10.3141/2140-18

  2. Arunadevi, J., Johnsanjeevkumar, A., Sujatha, N.: Intelligent transport route planning using parallel genetic algorithms and MPI. In: High Performance Computing Cluster, pp. 578–583 (2008). https://doi.org/10.1109/adcom.2007.76

  3. Broach, J., Dill, J., Gliebe, J.: Where do cyclists ride? a route choice model developed with revealed preference GPS data. Transport. Res. Part A: Policy Pract. 46(10), 1730–1740 (2012). https://doi.org/10.1016/j.tra.2012.07.005, https://linkinghub.elsevier.com/retrieve/pii/S0965856412001164

  4. Buehler, R., Dill, J.: Bikeway networks: a review of effects on cycling. Transport Rev. 36(1), 9–27 (2016). https://doi.org/10.1080/01441647.2015.1069908

  5. Chen, H.C., Wei, J.D.: Using neural networks for evaluation in heuristic search algorithm. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, 1, 1768–1769 (2011)

    Google Scholar 

  6. Daniels, S., Wets, G.: Traffic safety effects of roundabouts: a review with emphasis on bicyclist’s safety. In: 18th ICTCT workshop 18 (December 2007), 1–12 (2005)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). http://ieeexplore.ieee.org/document/996017/

  8. EC: Mobility and transport (2019). https://www.ec.europa.eu/transport/themes/clean-transport-urban-transport/cycling_en. Accessed 10 Sep 2019

  9. ECF: The benefits of cycling. Technical report, November 2018. https://ecf.com/sites/ecf.com/files/TheBenefitsOfCycling2018.pdf

  10. Farr, T.G., et al.: The shuttle radar topography mission. Rev. Geophys. 45(2), RG2004 (2007). https://doi.org/10.1029/2005RG000183

  11. Flower, J., Parkin, J.: Understanding attitudes to priorities at side road junctions. Transport. Res. Part F: Traffic Psychol. Behaviour 62, 246–257 (2019). https://doi.org/10.1016/J.TRF.2019.01.005, https://www.sciencedirect.com/science/article/pii/S136984781830809X

  12. Hochmair, H.H., Fu, Z.: Web based bicycle trip planning for broward county, Florida. In: ESRI User Conference, pp. 1–12 (2009). http://digitalcommons.fiu.edu/gis/31 digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1001&context=gis

  13. Hrncir, J., Song, Q., Zilecky, P., Nemet, M., Jakob, M.: Bicycle route planning with route choice preferences. Front. Artif. Intell. Appl. 263(September), 1149–1154 (2014). https://doi.org/10.3233/978-1-61499-419-0-1149

    Article  Google Scholar 

  14. Hrncir, J., Zilecky, P., Song, Q., Jakob, M.: Speedups for multi-criteria urban bicycle routing. OASIcs - OpenAccess Series in Informatics 48, 28 (2015). http://drops.dagstuhl.de/opus/volltexte/2015/5458/

  15. Hrncir, J., Zilecky, P., Song, Q., Jakob, M.: Practical multicriteria urban bicycle routing. IEEE Trans. Intell. Transport. Syst. 18(3), 493–504 (2017). https://doi.org/10.1109/TITS.2016.2577047

    Article  Google Scholar 

  16. Hsu, Y.T., Kang, L., Wu, Y.H.: User behavior of bikesharing systems under demand-supply imbalance. Transport. Res. Rec. J. Transport. Res. Board 2587(1), 117–124 (2016). http://journals.sagepub.com/doi/10.3141/2587-14

  17. Kang, L., Fricker, J.D.: Bicycle-route choice model incorporating distance and perceived risk. J. Urban Plann. Dev. 144(4), 04018041 (2018). https://doi.org/10.1061/(asce)up.1943-5444.0000485

    Article  Google Scholar 

  18. Lindsay, G., Macmillan, A., Woodward, A.: Moving urban trips from cars to bicycles: impact on health and emissions. Australian and New Zealand Journal of Public Health 35(1), 54–60 (2011). https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1753-6405.2010.00621.x

  19. Luxen, D., Gmbh, N., Vetter, C.: Real-time routing with OpenStreetMap data categories and subject descriptors. In: Proceedings of the 19th ACM SIGSPATIAL GIS Conference pp. 513–516 (2011)

    Google Scholar 

  20. Martins, E.Q.V.: On a multicriteria shortest path problem. Euro. J. Oper. Res. 16(2), 236–245 (1984). https://doi.org/10.1016/0377-2217(84)90077-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Menghini, G., Carrasco, N., Schüssler, N., Axhausen, K.W.: Route choice of cyclists in Zurich. Transport. Res. Part A: Policy and Practice 44(9), 754–765 (2010). http://dx.doi.org/10.1016/j.tra.2010.07.008

  22. Møller, M., Hels, T.: Cyclists’ perception of risk in roundabouts. Accident Anal. Prevention 40(3), 1055–1062 (2008). https://doi.org/10.1016/j.aap.2007.10.013, https://www.sciencedirect.com/science/article/pii/S0001457507002084

  23. Piet, H., Bradley, M.A.: Route Choice Analyzed with Stated-Preference Approaches pp. 11–20 (1985)

    Google Scholar 

  24. Pucher, J., Buehler, R.: Making cycling irresistible: lessons from the netherlands. Denmark and Germany. Transport Rev. 28(4), 495–528 (2008). https://doi.org/10.1080/01441640701806612

    Article  Google Scholar 

  25. Romero, J.P., Moura, J.L., Ibeas, A., Alonso, B.: A simulation tool for bicycle sharing systems in multimodal networks. Transport. Plan. Techno. 38(6), 646–663 (2015). http://dx.doi.org/10.1080/03081060.2015.1048946

  26. Schmitt, J.P., Baldo, F.: A method to suggest alternative routes based on analysis of automobiles’ trajectories. In: 2018 XLIV Latin American Computer Conference (CLEI), pp. 436–444. IEEE, October 2018. https://doi.org/10.1109/CLEI.2018.00059, https://ieeexplore.ieee.org/document/8786307/

  27. Seo, W.J., Ok, S.H., Ahn, J.H., Kang, S., Moon, B.: An efficient hardware architecture of the a-star algorithm for the shortest path search engine. In: 2009 Fifth International Joint Conference on INC, IMS and IDC, pp. 1499–1502. IEEE (2009). https://doi.org/10.1109/NCM.2009.371, http://ieeexplore.ieee.org/document/5331336/

  28. Song, Q., Zilecky, P., Jakob, M., Hrncir, J.: Exploring pareto routes in multi-criteria urban bicycle routing. In: 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014 (September), 1781–1787 (2014). https://doi.org/10.1109/ITSC.2014.6957951

  29. Stinson, M.A., Bhat, C.R.: Analysis using a stated preference survey. Burns 03, 107–115 (2003)

    Google Scholar 

  30. Summala, H.: Car drivers adjustments to cyclists at roundabouts 2014–2018, 2018 (2000). https://doi.org/10.1207/STHF0201

  31. Tilahun, N.Y., Levinson, D.M., Krizek, K.J.: Trails, lanes, or traffic: valuing bicycle facilities with an adaptive stated preference survey. Transport. Res. Part A: Pol. Pract. 41(4), 287–301 (2007). https://doi.org/10.1016/j.tra.2006.09.007

    Article  Google Scholar 

  32. Vedel, S.E., Jacobsen, J.B., Skov-Petersen, H.: Bicyclists’ preferences for route characteristics and crowding in Copenhagen - a choice experiment study of commuters. Transport. Res. Part A: Pol. Pract. 100, 53–64 (2017). https://doi.org/10.1016/j.tra.2017.04.006

    Article  Google Scholar 

  33. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994). https://doi.org/10.1007/BF00175354

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial Support through project POCI-01-0247-FEDER-033769 - “Ghisallo - Investigação e Desenvolvimento de uma nova solução de comutação urbana, assente num novo conceito de veículo elétrico de próxima geração” which was funded by the Operational Program for Competiveness and Internationalization (COMPETE 2020) in its component FEDER and UID/EMS/00481 /2013-FCT CENTRO-01-0145 FEDER-022083 POCI-01-0247-FEDER-033769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Nunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunes, P., Moura, A., Santos, J. (2020). Evolutionary Approach for the Multi-objective Bike Routing Problem. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59747-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59746-7

  • Online ISBN: 978-3-030-59747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics