Skip to main content

Increasing the Practical Applicability of Order Picking Operations by Integrating Classification, Labelling and Packaging Regulations

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2020)

Abstract

Warehouses play a vital role in every supply chain. The focus of warehouses is often on organising efficient and flexible order picking systems. However, warehouse managers indicate that planning order picking operations becomes extra complicated as they have to comply to many legislations. Warehouses in Europe are subject to the classification, labelling and packaging (CLP) regulation. Accounting for this regulation is vital in order to limit the risk of chemical reactions in the warehouse, therefore this regulation mainly affects storage decisions. The first objective of this study is to integrate the CLP regulation in storage assignment. An integer linear programming model is developed to formulate the CLP restricted problem. The second objective is to design an efficient order picking system by simulating different storage, batching and routing policies for a real-life warehouse subject to the CLP regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bódis, T., Botzheim, J.: Bacterial memetic algorithms for order picking routing problem with loading constraints. Expert Syst. Appl. 105, 196–220 (2018). https://doi.org/10.1016/j.eswa.2018.03.043

    Article  Google Scholar 

  2. Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.L., Ogier, M.: An efficient and general approach for the joint order batching and picker routing problem. Eur. J. Oper. Res. (2020). https://doi.org/10.1016/j.ejor.2020.01.059

    Article  MathSciNet  MATH  Google Scholar 

  3. Chabot, T., Lahyani, R., Coelho, L.C., Renaud, J.: Order picking problems under weight, fragility and category constraints. Int. J. Prod. Res. 55(21), 6361–6379 (2017). https://doi.org/10.1080/00207543.2016.1251625

    Article  Google Scholar 

  4. De Koster, R.B.M., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007). https://doi.org/10.1016/j.ejor.2006.07.009

    Article  MATH  Google Scholar 

  5. Dekker, R., De Koster, R.B.M., Roodbergen, K.J., Van Kalleveen, H.: Improving order-picking response time at Ankor’s warehouse. Interfaces 34(4), 303–313 (2004). https://doi.org/10.1287/inte.1040.0083

    Article  Google Scholar 

  6. Glock, C.H., Grosse, E.H., Elbert, R.M., Franzke, T.: Maverick picking: the impact of modifications in work schedules on manual order picking processes. Int. J. Prod. Res. 55(21), 6344–6360 (2017). https://doi.org/10.1080/00207543.2016.1252862

    Article  Google Scholar 

  7. Henn, S.: Algorithms for on-line order batching in an order picking warehouse. Comput. Oper. Res. 39(11), 2549–2563 (2012). https://doi.org/10.1016/j.cor.2011.12.019

    Article  MATH  Google Scholar 

  8. Henn, S., Wäscher, G.: Tabu search heuristics for the order batching problem in manual order picking systems. Eur. J. Oper. Res. 222(3), 484–494 (2012). https://doi.org/10.1016/j.ejor.2012.05.049

    Article  MATH  Google Scholar 

  9. Ho, Y.C., Su, T.S., Shi, Z.B.: Order-batching methods for an order-picking warehouse with two cross aisles. Comput. Ind. Eng. 55(2), 321–347 (2008). https://doi.org/10.1016/j.cie.2007.12.018

    Article  Google Scholar 

  10. Marchet, G., Melacini, M., Perotti, S.: Investigating order picking system adoption: a case-study-based approach. Int. J. Logist. Res. Appl. 18(1), 82–98 (2015). https://doi.org/10.1080/13675567.2014.945400

    Article  Google Scholar 

  11. Masae, M., Glock, C.H., Grosse, E.H.: Order picker routing in warehouses: a systematic literature review. Int. J. Prod. Econ. 224, 107564 (2020). https://doi.org/10.1016/j.ijpe.2019.107564

    Article  Google Scholar 

  12. Matusiak, M., De Koster, R.B.M., Kroon, L., Saarinen, J.: A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse. Eur. J. Oper. Res. 236(3), 968–977 (2014). https://doi.org/10.1016/j.ejor.2013.06.001

    Article  MathSciNet  MATH  Google Scholar 

  13. Roodbergen, K.J.: Storage assignment for order picking in multiple-block warehouses. In: Manzini, R. (ed.) Warehousing in the Global Supply Chain, pp. 139–155. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2274-6_7

    Chapter  Google Scholar 

  14. Theys, C., Bräysy, O., Dullaert, W., Raa, B.: Using a TSP heuristic for routing order pickers in warehouses. Eur. J. Oper. Res. 200(3), 755–763 (2010). https://doi.org/10.1016/j.ejor.2009.01.036

    Article  MATH  Google Scholar 

  15. Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., de Koster, R.B.M.: Designing efficient order picking systems: the effect of real-life features on the relationship among planning problems. Transp. Res. Part E: Logist. Transp. Rev. 125, 47–73 (2019). https://doi.org/10.1016/j.tre.2019.02.010

    Article  Google Scholar 

  16. Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., Caris, A.: Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. Int. J. Prod. Econ. 197(Part C), 243–261 (2018). https://doi.org/10.1016/j.ijpe.2017.11.021

    Article  MATH  Google Scholar 

  17. Van Gils, T., Ramaekers, K., Caris, A., De Koster, R.B.M.: Designing efficient order picking systems by combining planning problems: state-of-the-art classification and review. Eur. J. Oper. Res. 267(1), 1–15 (2018). https://doi.org/10.1016/j.ejor.2017.09.002

    Article  MathSciNet  MATH  Google Scholar 

  18. Vanheusden, S., van Gils, T., Caris, A., Ramaekers, K., Braekers, K.: Operational workload balancing in manual order picking. Comput. Ind. Eng. 141, 106269 (2020). https://doi.org/10.1016/j.cie.2020.106269

    Article  Google Scholar 

  19. Žulj, I., Glock, C.H., Grosse, E.H., Schneider, M.: Picker routing and storage-assignment strategies for precedence-constrained order picking. Comput. Ind. Eng. 123, 338–347 (2018). https://doi.org/10.1016/j.cie.2018.06.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Vanheusden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vanheusden, S., van Gils, T., Ramaekers, K., Caris, A. (2020). Increasing the Practical Applicability of Order Picking Operations by Integrating Classification, Labelling and Packaging Regulations. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59747-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59746-7

  • Online ISBN: 978-3-030-59747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics