Abstract
The simultaneous evolution of metamodels and models is called the meta-models/models co-evolution problem. While some Interactive/automated metamodel/model co-evolution techniques have been proposed using multi-objective search, designers still need to explore a large number of possible revised models. In this paper, we propose an approach to convert multi-objective search into a mono-objective one after interacting with the designer to identify a set of model changes based on his/her preferences. The first step consists of using a multi-objective search to generate different possible model edit operations by finding a trade-off between three objectives. Then, the designer may give feedback on some proposed solutions. The extracted preferences are used to transform the multi-objective search into a mono-objective one by generating an evaluation function based on the weights for the existing fitness functions that are automatically computed from the feedback. Thus, the designer will just interact with only one solution generated by the mono-objective search. We evaluated our approach on a set of metamodel/model co-evolution case studies and compared it to existing fully automated and interactive meta-model/model co-evolution techniques. The results show that the mono-objective search after the interaction with the users significantly improved the co-evolution changes for several widely used metamodels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel evolution in MDE. J. Object Technol. (2012)
Hebig, R., Khelladi, D.E., Bendraou, R.: Approaches to co-evolution of metamodels and models: a survey. IEEE Trans. Softw. Eng. 43(5), 396–414 (2017)
Schoenboeck, J., et al.: CARE: a constraint-based approach for re-establishing conformance-relationships. In: Proceedings of APCCM (2014)
Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place transformation-based approach to structured model co-evolution. In: Proceedings of MPM Workshop (2010)
Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages. Sci. Comput. Program. 76(12), 1223–1246 (2011)
Cicchetti, A., Ciccozzi, F., Leveque, T., Pierantonio, A.: On the concurrent versioning of metamodels and models: challenges and possible solutions. In: Proceedings IWMCP (2011)
Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by precise detection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02674-4_4
Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-driven engineering. In: Proceedings of EDOC (2008)
Kessentini, W., Sahraoui, H., Wimmer, M.: Automated metamodel/model co-evolution using a multi-objective optimization approach. In: Wąsowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 138–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42061-5_9
Kessentini, W., Sahraoui, H.A., Wimmer, M.: Automated metamodel/model co-evolution: a search-based approach. Inf. Softw. Technol. 106, 49–67 (2019)
Kessentini, W., Wimmer, M., Sahraoui, H.A.: Integrating the designer in-the-loop for metamodel/model co-evolution via interactive computational search. In: Wasowski, A., Paige, R.F., Haugen, Ø. (eds.) Proceedings of MODELS, pp. 101–111 (2018)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83
Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of operators for the coupled evolution of metamodels and models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_10
Richters, M.: A precise approach to validating UML models and OCL constraints. Technical report (2001)
Muflikhah, L., Baharudin, B.: Document clustering using concept space and cosine similarity measurement. In: Proceedings of ICCTD (2009)
Wimmer, M., Kusel, A., Schoenboeck, J., Retschitzegger, W., Schwinger, W.: On using inplace transformations for model co-evolution. In: Proceedings of MtATL Workshop (2010)
Cicchetti, A., Ciccozzi, F., Leveque, T., Pierantonio, A.: On the concurrent versioning of metamodels and models: challenges and possible solutions. In: Proceedings of IWMCP (2011)
Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice: the history of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 3–22. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12107-4_3
Herrmannsdoerfer, M.: GMF: a model migration case for the transformation tool contest. In: Proceedings of TTC (2011)
Rose, L.M., et al.: Graph and model transformation tools for model migration - empirical results from the transformation tool contest. SoSym 13(1), 323–359 (2014)
Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated co-evolution of GMF editor models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 143–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_9
Pollatsek, A., Well, A.D.: On the use of counterbalanced designs in cognitive research: a suggestion for a better and more powerful analysis. J. Exp. Psychol. Learn. Mem. Cogn. 21(3), 785 (1995)
Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: Proceedings of ICSE (2011)
Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evolution. J. Vis. Lang. Comput. 15(3–4), 291–307 (2004)
Gruschko, B.: Towards synchronizing models with evolving metamodels. In: Proceedings of MoDSE Workshop (2007)
Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13688-7_13
Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic domain model migration to manage metamodel evolution. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0_57
Ramirez, A., Romero, J.R., Simons, C.L.: A systematic review of interaction in search-based software engineering. IEEE Trans. Softw. Eng. 45(8), 760–781 (2018)
Morales, R., Chicano, F., Khomh, F., Antoniol, G.: Efficient refactoring scheduling based on partial order reduction. J. Syst. Softw. 145, 25–51 (2018)
Morales, R., Soh, Z., Khomh, F., Antoniol, G., Chicano, F.: On the use of developers’ context for automatic refactoring of software anti-patterns. J. Syst. Softw. 128, 236–251 (2017)
Han, A.R., Bae, D.H., Cha, S.: An efficient approach to identify multiple and independent move method refactoring candidates. IST 59, 53–66 (2015)
Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A.: A cooperative parallel search-based software engineering approach for code-smells detection. TSE 40(9), 841–861 (2014)
Alizadeh, V., Fehri, H., Kessentini, M.: Less is more: from multi-objective to mono-objective refactoring via developer’s knowledge extraction. In: SCAM, pp. 181–192. IEEE (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kessentini, W., Alizadeh, V. (2020). Transforming Interactive Multi-objective Metamodel/Model Co-evolution into Mono-objective Search via Designer’s Preferences Extraction. In: Aleti, A., Panichella, A. (eds) Search-Based Software Engineering. SSBSE 2020. Lecture Notes in Computer Science(), vol 12420. Springer, Cham. https://doi.org/10.1007/978-3-030-59762-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-59762-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59761-0
Online ISBN: 978-3-030-59762-7
eBook Packages: Computer ScienceComputer Science (R0)