Skip to main content

Transforming Interactive Multi-objective Metamodel/Model Co-evolution into Mono-objective Search via Designer’s Preferences Extraction

  • Conference paper
  • First Online:
Search-Based Software Engineering (SSBSE 2020)

Abstract

The simultaneous evolution of metamodels and models is called the meta-models/models co-evolution problem. While some Interactive/automated metamodel/model co-evolution techniques have been proposed using multi-objective search, designers still need to explore a large number of possible revised models. In this paper, we propose an approach to convert multi-objective search into a mono-objective one after interacting with the designer to identify a set of model changes based on his/her preferences. The first step consists of using a multi-objective search to generate different possible model edit operations by finding a trade-off between three objectives. Then, the designer may give feedback on some proposed solutions. The extracted preferences are used to transform the multi-objective search into a mono-objective one by generating an evaluation function based on the weights for the existing fitness functions that are automatically computed from the feedback. Thus, the designer will just interact with only one solution generated by the mono-objective search. We evaluated our approach on a set of metamodel/model co-evolution case studies and compared it to existing fully automated and interactive meta-model/model co-evolution techniques. The results show that the mono-objective search after the interaction with the users significantly improved the co-evolution changes for several widely used metamodels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel evolution in MDE. J. Object Technol. (2012)

    Google Scholar 

  2. Hebig, R., Khelladi, D.E., Bendraou, R.: Approaches to co-evolution of metamodels and models: a survey. IEEE Trans. Softw. Eng. 43(5), 396–414 (2017)

    Article  Google Scholar 

  3. Schoenboeck, J., et al.: CARE: a constraint-based approach for re-establishing conformance-relationships. In: Proceedings of APCCM (2014)

    Google Scholar 

  4. Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place transformation-based approach to structured model co-evolution. In: Proceedings of MPM Workshop (2010)

    Google Scholar 

  5. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages. Sci. Comput. Program. 76(12), 1223–1246 (2011)

    Article  Google Scholar 

  6. Cicchetti, A., Ciccozzi, F., Leveque, T., Pierantonio, A.: On the concurrent versioning of metamodels and models: challenges and possible solutions. In: Proceedings IWMCP (2011)

    Google Scholar 

  7. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by precise detection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02674-4_4

    Chapter  Google Scholar 

  8. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-driven engineering. In: Proceedings of EDOC (2008)

    Google Scholar 

  9. Kessentini, W., Sahraoui, H., Wimmer, M.: Automated metamodel/model co-evolution using a multi-objective optimization approach. In: Wąsowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 138–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42061-5_9

    Chapter  Google Scholar 

  10. Kessentini, W., Sahraoui, H.A., Wimmer, M.: Automated metamodel/model co-evolution: a search-based approach. Inf. Softw. Technol. 106, 49–67 (2019)

    Article  Google Scholar 

  11. Kessentini, W., Wimmer, M., Sahraoui, H.A.: Integrating the designer in-the-loop for metamodel/model co-evolution via interactive computational search. In: Wasowski, A., Paige, R.F., Haugen, Ø. (eds.) Proceedings of MODELS, pp. 101–111 (2018)

    Google Scholar 

  12. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  13. Immo. https://sites.google.com/view/ssbse2020/

  14. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of operators for the coupled evolution of metamodels and models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_10

    Chapter  Google Scholar 

  15. Richters, M.: A precise approach to validating UML models and OCL constraints. Technical report (2001)

    Google Scholar 

  16. Muflikhah, L., Baharudin, B.: Document clustering using concept space and cosine similarity measurement. In: Proceedings of ICCTD (2009)

    Google Scholar 

  17. Wimmer, M., Kusel, A., Schoenboeck, J., Retschitzegger, W., Schwinger, W.: On using inplace transformations for model co-evolution. In: Proceedings of MtATL Workshop (2010)

    Google Scholar 

  18. Cicchetti, A., Ciccozzi, F., Leveque, T., Pierantonio, A.: On the concurrent versioning of metamodels and models: challenges and possible solutions. In: Proceedings of IWMCP (2011)

    Google Scholar 

  19. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice: the history of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 3–22. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12107-4_3

    Chapter  Google Scholar 

  20. Herrmannsdoerfer, M.: GMF: a model migration case for the transformation tool contest. In: Proceedings of TTC (2011)

    Google Scholar 

  21. Rose, L.M., et al.: Graph and model transformation tools for model migration - empirical results from the transformation tool contest. SoSym 13(1), 323–359 (2014)

    Google Scholar 

  22. Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated co-evolution of GMF editor models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 143–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_9

    Chapter  Google Scholar 

  23. Pollatsek, A., Well, A.D.: On the use of counterbalanced designs in cognitive research: a suggestion for a better and more powerful analysis. J. Exp. Psychol. Learn. Mem. Cogn. 21(3), 785 (1995)

    Article  Google Scholar 

  24. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: Proceedings of ICSE (2011)

    Google Scholar 

  25. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evolution. J. Vis. Lang. Comput. 15(3–4), 291–307 (2004)

    Article  Google Scholar 

  26. Gruschko, B.: Towards synchronizing models with evolving metamodels. In: Proceedings of MoDSE Workshop (2007)

    Google Scholar 

  27. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13688-7_13

    Chapter  Google Scholar 

  28. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic domain model migration to manage metamodel evolution. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04425-0_57

    Chapter  Google Scholar 

  29. Ramirez, A., Romero, J.R., Simons, C.L.: A systematic review of interaction in search-based software engineering. IEEE Trans. Softw. Eng. 45(8), 760–781 (2018)

    Article  Google Scholar 

  30. Morales, R., Chicano, F., Khomh, F., Antoniol, G.: Efficient refactoring scheduling based on partial order reduction. J. Syst. Softw. 145, 25–51 (2018)

    Article  Google Scholar 

  31. Morales, R., Soh, Z., Khomh, F., Antoniol, G., Chicano, F.: On the use of developers’ context for automatic refactoring of software anti-patterns. J. Syst. Softw. 128, 236–251 (2017)

    Article  Google Scholar 

  32. Han, A.R., Bae, D.H., Cha, S.: An efficient approach to identify multiple and independent move method refactoring candidates. IST 59, 53–66 (2015)

    Google Scholar 

  33. Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A.: A cooperative parallel search-based software engineering approach for code-smells detection. TSE 40(9), 841–861 (2014)

    Google Scholar 

  34. Alizadeh, V., Fehri, H., Kessentini, M.: Less is more: from multi-objective to mono-objective refactoring via developer’s knowledge extraction. In: SCAM, pp. 181–192. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wael Kessentini or Vahid Alizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kessentini, W., Alizadeh, V. (2020). Transforming Interactive Multi-objective Metamodel/Model Co-evolution into Mono-objective Search via Designer’s Preferences Extraction. In: Aleti, A., Panichella, A. (eds) Search-Based Software Engineering. SSBSE 2020. Lecture Notes in Computer Science(), vol 12420. Springer, Cham. https://doi.org/10.1007/978-3-030-59762-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59762-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59761-0

  • Online ISBN: 978-3-030-59762-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics