Skip to main content

Manifold-Based Classifier Ensembles

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2020)

Abstract

In this paper, we briefly present classifier ensembles making use of nonlinear manifolds. Riemannian manifolds have been created using classifier interactions which are presented as symmetric and positive-definite (SPD) matrices. Grassmann manifolds as some particular case of Riemannian manifolds are constructed using decision profiles. Experimental routine shows advantages of Riemannian geometry and nonlinear manifolds for classifier ensemble learning.

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, G., Kuang, G.: Target recognition in SAR images via classification on Riemannian manifolds. IEEE Geosci. Remote Sens. Lett. 12(1), 199–203 (2014)

    Article  Google Scholar 

  2. Frank, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  4. Huang, Z., Wang, R., Shan, S., Chen, X.: Projection metric learning on Grassmann manifold with application to video based face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 140–149 (2015)

    Google Scholar 

  5. Huang, Z., Wang, R., Shan, S., Van Gool, L., Chen, X.: Cross Euclidean-to-Riemannian metric learning with application to face recognition from video. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2827–2840 (2017)

    Article  Google Scholar 

  6. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–2477 (2015)

    Article  Google Scholar 

  7. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations (2013)

    Google Scholar 

  8. Ko, A.H., Sabourin, R., de Souza Britto, A., Oliveira, L.: Pairwise fusion matrix for combining classifiers. Pattern Recogn. 40(8), 2198–2210 (2007)

    Article  Google Scholar 

  9. Kuncheva, L.I.: A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Trans. Knowl. Data Eng. 25(3), 494–501 (2013)

    Article  Google Scholar 

  10. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recogn. 34(2), 299–314 (2001)

    Article  Google Scholar 

  11. Oord, A.v.d., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 1747–1756 (2016)

    Google Scholar 

  12. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the 4th International Conference on Learning Representations (2016)

    Google Scholar 

  13. Rokach, L.: Decision forest: twenty years of research. Inf. Fusion 27, 111–125 (2016)

    Article  Google Scholar 

  14. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  16. Xie, X., Yu, Z.L., Lu, H., Gu, Z., Li, Y.: Motor imagery classification based on bilinear sub-manifold learning of symmetric positive-definite matrices. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 504–516 (2016)

    Article  Google Scholar 

  17. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton, FL, USA (2012)

    Google Scholar 

  18. Zhou, Z.H., Feng, J.: Deep forest: towards an alternative to deep neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 3553–3559 (2017)

    Google Scholar 

Download references

Acknowledgements

The Authors would like to thank the anonymous referees for valuable comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Krzyzak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tayanov, V., Krzyzak, A., Suen, C.Y. (2020). Manifold-Based Classifier Ensembles. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59830-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59829-7

  • Online ISBN: 978-3-030-59830-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics