Abstract
While the handwritten character recognition has reached a point of maturity, the recognition of handwritten mathematics is still a challenging problem. The problem usually consists of three major parts: strokes segmentation, single symbol recognition and structural analysis. In this paper, we present a review on handwritten mathematical expression recognition to show how the recognition technique is developed. In particular, we put emphasis on the differences between systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, R.H.: Syntax-directed recognition of hand-printed two-dimensional mathematics. In: Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc., Symposium. ACM, pp. 436–459 (1967)
Belaid, A., Haton, J.-P.: A syntactic approach for handwritten mathematical formula recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1, 105–111 (1984)
Simistira, F., Katsouros, V., Carayannis, G.: Recognition of online handwritten mathematical formulas using probabilistic SVMs and stochastic context free grammars. Pattern Recogn. Lett. 53, 85–92 (2015)
Chan, K.-F., Yeung, D.-Y.: Mathematical expression recognition: a survey. Int. J. Doc. Anal. Recogn. 3(1), 3–15 (2000)
Lamport, L.: LATEX: A Document Preparation System: User’s Guide and Reference Manual. Addison-Wesley, Boston (1994)
Le, A.D., Van Phan, T., Nakagawa, M.: A system for recognizing online handwritten mathematical expressions and improvement of structure analysis. In: 11th International Workshop on Document Analysis Systems (DAS 2014). IEEE (2014)
Mouchère, H., Zanibbi, R., Garain, U., et al.: Advancing the state of the art for handwritten math recognition: the CROHME competitions, 2011–2014. Int. J. Doc. Anal. Recogn. (IJDAR) 19(2), 173–189 (2016)
Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using tree transformation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1455–1467 (2002)
Álvaro, F., Sánchez, J.-A., Bened’ı, J.-M.: Recognition of on-line handwritten mathematical expressions using 2D stochastic context-free grammars and hidden Markov models. Pattern Recogn. Lett. 35, 58–67 (2014)
Chou, P.A.: Recognition of equations using a two-dimensional stochastic context-free grammar. Proc. SPIE 1199, 852–863 (1989)
Nakayama, Y.: Mathematical formula editor for CAI. ACM SIGCHI Bull. 20(SI), 387–392 (1989)
Fateman, R.J., Tokuyasu, T., Berman, B.P., et al.: Optical character recognition and parsing of typeset mathematics1. J. Vis. Commun. Image Representation 7(1), 2–15 (1996)
Belaid, A., Haton, J.P.: A syntactic approach for handwritten mathematical formula recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1, 105–111 (1984)
Chan, K.F., Yeung, D.Y.: Recognizing on-line handwritten alphanumeric characters through flexible structural matching. Pattern Recogn. 32(7), 1099–1114 (1999)
Chen, L.: A system for on-line recognition of handwritten mathematical expressions. Comput. Process. Chin. Orient. Lang. 6(1), 19–39 (1992)
Lee, H.J., Lee, M.C.: Understanding mathematical expressions in a printed document. In: Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR 1993), pp. 502–505. IEEE (1993)
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)
Koschinski, M., Winkler, H.J., Lang, M.: Segmentation and recognition of symbols within handwritten mathematical expressions. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2439–2442. IEEE (1995)
MacLean, S., Labahn, G.: A Bayesian model for recognizing handwritten mathematical expressions. Pattern Recogn. 48(8), 2433–2445 (2015)
Chappelier, J.C., Rajman, M.: A generalized CYK algorithm for parsing stochastic CFG. TAPD 98(133–137), 5 (1998)
Rhee, T.H., Kim, J.H.: Efficient search strategy in structural analysis for handwritten mathematical expression recognition. Pattern Recogn. 42(12), 3192–3201 (2009)
Álvaro, F., Sánchez, J.A., Benedí, J.M.: Recognition of on-line handwritten mathematical expressions using 2D stochastic context-free grammars and hidden Markov models. Pattern Recogn. Lett. 35, 58–67 (2014)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)
Luong, M.-T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare word problem in neural machine translation, arXiv preprint arXiv: 1410.8206 (2014)
Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-end attention-based large vocabulary speech recognition. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949. IEEE (2016)
Chan, W., Jaitly, N., Le, Q.V., Vinyals, O.: Listen, attend and spell, arXiv preprint arXiv: 1508.01211 (2015)
Zhang, J., Du, J., Zhang, S., et al.: Watch, attend and parse: an end-to-end neural network based approach to handwritten mathematical expression recognition. Pattern Recogn. 71, 196–206 (2017)
Zhang, J., Du, J., Dai, L.: Track, attend, and parse (TAP): an end-to-end framework for online handwritten mathematical expression recognition. IEEE Trans. Multimed. 21(1), 221–233 (2018)
Zhang, T., Mouchère, H., Viard-Gaudin, C.: A tree-BLSTM-based recognition system for online handwritten mathematical expressions. Neural Comput. Appl. 1–20 (2018)
Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Advances in neural information processing systems, pp. 577–584 (2002)
Saidane, Z., Garcia, C.: Automatic scene text recognition using a convolutional neural network. In: Workshop on Camera-Based Document Analysis and Recognition, vol. 1 (2007)
Kim, G., Govindaraju, V., Srihari, S.N.: An architecture for handwritten text recognition systems. Int. J. Doc. Anal. Recogn. 2(1), 37–44 (1999)
Espana-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., et al.: Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 767–779 (2010)
Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. Physica-Verlag HD, pp. 177–186 (2010)
Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25
Tillmann, C., Ney, H.: Word reordering and a dynamic programming beam search algorithm for statistical machine translation. Comput. Linguist. 29(1), 97–133 (2003)
Mouchere, H., Viard-Gaudin, C., Zanibbi, R., et al.: ICFHR 2014 competition on recognition of on-line handwritten mathematical expressions (CROHME 2014). In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 791–796. IEEE (2014)
Mouchère, H., Viard-Gaudin, C., Zanibbi, R., et al.: ICFHR2016 CROHME: competition on recognition of online handwritten mathematical expressions. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 607–612. IEEE (2016)
Cho, K., Van Merriënboer, B., Gulcehre, C., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Mouchere, H., Viard-Gaudin, C., Zanibbi, R., et al.: ICDAR 2013 CROHME: third international competition on recognition of online handwritten mathematical expressions. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1428–1432. IEEE (2013)
Dam, H.K., Pham, T., Ng, S.W., et al.: A deep tree-based model for software defect prediction. arXiv preprint arXiv:1802.00921 (2018)
Sankaran, N., Jawahar, C.V.: Recognition of printed Devanagari text using BLSTM Neural Network. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 322–325. IEEE (2012)
Hannun, A.: Sequence modeling with CTC. Distill 2(11), e8 (2017)
Acknowledgments
This work was supported by the Guangdong Provincial Government of China through the “Computational Science Innovative Research Team” program and the Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University ,and the National Science Foundation of China (grant no. 11471012).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
He, F., Tan, J., Bi, N. (2020). Handwritten Mathematical Expression Recognition: A Survey. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-59830-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59829-7
Online ISBN: 978-3-030-59830-3
eBook Packages: Computer ScienceComputer Science (R0)