Abstract
In this paper, an automatic video diagnosis system for dementia classification is presented. Starting from video recordings of patients and control subjects, performing sit-to-stand test, the designed system is capable of extracting relevant patterns for binary discern patients with dementia from healthy subjects. The proposed system achieves an accuracy 0.808 by using the rigorous inter-patient separation scheme especially suited for medical purposes. This separation scheme provides the use of some people for training and others, different, people for testing. This work is an original and pioneering work on sit-to-stand video classification for neurodegenerative diseases, thus the novelty in this study is both on phases segmentation and experimental setup.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertram, L., Tanzi, R.E.: The genetic epidemiology of neurodegenerative disease. J. Clin. Investig. 115(6), 1449–1457 (2005)
Alzheimer’s, A.: 2015 Alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’s Assoc. 11(3), 332 (2015)
Dauer, W., Przedborski, S.: Parkinson’s disease: mechanisms and models. Neuron 39(6), 889–909 (2003)
Whittle, M.W.: Clinical gait analysis: a review. Hum. Mov. Sci. 15(3), 369–387 (1996)
Whitney, S.L., Wrisley, D.M., Marchetti, G.F., Gee, M.A., Redfern, M.S., Furman, J.M.: Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the five-times-sit-to-stand test. Phys. Ther. 85(10), 1034–1045 (2005)
Tsukahara, A., Kawanishi, R., Hasegawa, Y., Sankai, Y.: Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv. Robot. 24(11), 1615–1638 (2010)
Matthew, R.P., Seko, S., Bajcsy, R.: Fusing motion-capture and inertial measurements for improved joint state recovery: an application for sit-to-stand actions. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1893–1896. IEEE, July 2017
Li, T., et al.: Automatic timed up-and-go sub-task segmentation for parkinson’s disease patients using video-based activity classification. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2189–2199 (2018)
Muro-De-La-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)
Podsiadlo, D., Richardson, S.: The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39(2), 142–148 (1991)
Applebaum, E.V., et al.: Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans. PLoS ONE 12(5), e0176946 (2017)
Duncan, R.P., Leddy, A.L., Earhart, G.M.: Five times sit-to-stand test performance in Parkinson’s disease. Arch. Phys. Med. Rehabil. 92(9), 1431–1436 (2011)
Dentamaro, V., Impedovo, D., Pirlo, G.: Real-time neurodegenerative disease video classification with severity prediction. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 618–628. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_56
Lin, T.-Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Welch, G., Bishop, G.: An introduction to the Kalman filter, pp. 41–95 (1995)
Dentamaro, V., Impedovo, D., Pirlo, G.: LICIC: less important components for imbalanced multiclass classification. Information 9(12), 317 (2018)
Ross, B.C.: Mutual information between discrete and continuous data sets. PLoS ONE 9(2), e87357 (2014)
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)
Zheng, E., Chen, B., Wang, X., Huang, Y., Wang, Q.: On the design of a wearable multi-sensor system for recognizing motion modes and sit-to-stand transition. Int. J. Adv. Rob. Syst. 11(2), 30 (2014)
Impedovo, D., Pirlo, G.: Dynamic handwriting analysis for the assessment of neurodegenerative diseases: a pattern recognition perspective. IEEE Rev. Biomed. Eng. 12, 209–220 (2018)
Impedovo, D.: Velocity-based signal features for the assessment of Parkinsonian handwriting. IEEE Signal Process. Lett. 26(4), 632–636 (2019)
Acknowledgments
This work is within the BESIDE project (no. YJTGRA7) funded by the Regione Puglia POR Puglia FESR - FSE 2014-2020. Fondo Europeo Sviluppo Regionale. Azione 1.6 - Avviso pubblico “InnoNetwork”.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Dentamaro, V., Impedovo, D., Pirlo, G. (2020). Sit-to-Stand Test for Neurodegenerative Diseases Video Classification. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-59830-3_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-59829-7
Online ISBN: 978-3-030-59830-3
eBook Packages: Computer ScienceComputer Science (R0)